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A B S T R A C T   

It has been repeatedly shown that temporal task features are reflected in eye blink dynamics during attention 
tasks. Eye blinks occur with increased likeliness particularly when demands on external attention allocation are 
low. Both predictive, top-down and reactive, bottom-up processes were shown to be involved in blink regulation. 
However, whether temporal stimulus prediction is a generally active component of the attention system or rather 
specific to the visual domain has not been fully elaborated yet. By monitoring eye blinking of 99 students during 
an auditory attention task and analyzing particularly the dynamics of eye blink onsets relative to stimuli timings, 
we show here that prediction does, in principle, not require visual stimulation, and is also not merely a 
consequence of the involvement of manual responses during the task. We further show that both the inclusion of 
manual response to stimuli and elevated task predictability enhance the prediction component reflected in eye 
blink dynamics, whereas for the latter we experimentally manipulate objective task predictability by adjusting 
the frequency dependence of the power spectral densities of the series of inter-stimulus time intervals. This al
lows us finally to explain why, for specific choices of experimental conditions, the generally active and present 
prediction component involved in attention can become difficult to detect in non-visual, auditory tasks. 
Conversely, this comes with the important implication that, if tasks aim for elaborating particularly temporal 
prediction, distributing stimuli over time such that inter-stimulus-intervals conform to a sample of Gaussian 
noise represents a specifically unfavorable choice.   

1. Introduction 

Eye blinking has received considerable interest in cognitive psy
chology due to a steadily growing number of empirical studies sug
gesting it to serve as an easily accessible, non-invasive indicator for 
various intra-individual mental states and cognitive processes. In fact, of 
the 43 internal and external factors affecting eye blinking collected by 
Rodriguez et al. (2017), at least 17 are directly associated with specific 
mental states or cognitive processes (e.g. emotional state, mental fatigue 
and disorders, anxiety, concentration, deception, speech processing). In 
addition, many of the remaining factors such as hormonal changes, 
muscular fatigue and tension, illumination or noise are indirectly, yet 
clearly related to cognitive processing either. 

Attention may serve as a common denominator underlying the va
riety of factors capable of affecting eye blinking and has, indeed, been 
suggested as one of the main psychological drivers of endogenous eye 
blink regulation for about a century (Haathi and Wuorinen, 1919; 

Ponder and Kennedy, 1927). For the intricate interrelations between 
attention and other cognitive processes it also stands to reason that eye 
blinking can be generally affected by a multitude of activities such as 
laboratory tasks including arithmetic operations, attention and memory 
tasks of varying difficulty (Holland and Tarlow, 1975; Tanaka and 
Yamaoka, 1993; Bacher et al., 2017; Fukuda et al., 2005; Irwin, 2014), 
resting, reading, listening and talking (Bentivoglio et al., 1997; Karson 
et al., 1981; Mori et al., 2008), or operation of vehicles including driving 
(Lal and Craig, 2002), flying (Morris and Miller, 1996), and air traffic 
control (McIntire et al., 2014). The close relations between attention and 
the dopaminergic system may further explain characteristic effects of 
certain pathological changes on eye blink rate like in Parkinson’s disease 
or in schizophrenia (Green, 2006; Nieoullon, 2002; Maffei and Angrilli, 
2018). A more comprehensive overview of the literature suggesting eye 
blink rate as a behavioral marker of dopamine function is provided by 
Jongkees and Colzato (2016). 

That attention – rather than physiological purposes of cleaning and 
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lubricating the surface of the eye for maintaining a stable tear film and 
good quality of vision (Sweeney et al., 2013; Montés-Micó, 2007) – 
mainly drives eye blink regulation can also explain why most people 
blink by far more often than physiologically necessary and why people 
blind from birth do hardly differ from people with vision in regard of 
blinking (Ponder and Kennedy, 1927). Although spanning an overall 
wide range of 3–48 blinks per minute, average blink rates were reported 
to about 14 blinks per minute (Doughty and Naase, 2006), accounting 
for a blink approximately every 4.3 s. In contrast, average tear film 
break-up times in healthy subjects were reported within a range of 
19–42 s (Sweeney et al., 2013) depending on the choice of method for 
measurement. Although associated also with wide ranges of individual 
results (3–214 s), they typically exceed average inter-blink intervals by 
far, rendering tear film break-up unlikely to induce blinking (Norn, 
1969). 

Furthermore, eye blinks hardly occur randomly in time, but were 
reported to be temporally correlated with external stimulus onsets 
(Siegle et al., 2008), implicit breakpoints during movies (Nakano et al., 
2013), smiling (Trutoiu et al., 2013), head movements and facial ex
pressions during conversation (Ford et al., 2013), finger movements 
(Cong et al., 2010), verbal (Oh et al., 2012a) and manual responses 
during laboratory tasks (van Dam and van Ee, 2005; Oh et al., 2012b; 
Hoppe et al., 2018; Kobald et al., 2019; Huber et al., 2022). In a visual 
attention task (Hoppe et al., 2018) participants were required to detect 
temporary, very short visual events, and they quickly learned to time 
their blinking strategically, i.e. to blink rather when the respective 
events were unlikely to occur. In contrast, blinking was suppressed 
during phases in which events were highly likely. Such alignment of 
blink suppression with temporal task structure was also observed in 
auditory attention tasks (Oh et al., 2012b; Kobald et al., 2019; Brych and 
Händel, 2020; Huber et al., 2022). These findings suggest that the 
relation between blinking and attention is hardly constrained to the 
visual perception modality, but influences information processing via a 
general, cognitive, top-down mechanism such that eye blinking is sup
pressed particularly in phases when (task-)relevant information needs to 
be processed and is released directly afterwards (Wascher et al., 2015). 

By contrasting results obtained from visual, auditory, and bimodal 
attention tasks, Brych and Händel (2020) managed to disentangle 
cognitive (top-down) from sensory (bottom-up) influences on eye blink 
timing. In particular, they identified three specific processes. First, a 
domain-specific, preparatory, top-down influence on blinking prior to 
sensory input, i.e. the likeliness to blink was decreased in preparation of 
visual input compared to auditory input. Second, a post-stimulus, early 
increase in blink likeliness after sensory input not requiring response 
(standard stimuli) if a task is involved for both modalities, and solely for 
the visual domain if no task is involved, suggesting a bottom-up influ
ence specific to the visual domain in addition to a general top-down 
influence. Third, a reduction of this post-stimulus, early increase in 
blink likeliness given that the sensory input is comprised of a target 
stimulus requiring response in form of counting, an omission, or a dis
tractor, accompanied by a late increase in blink likeliness in the case of 
target stimuli or omissions. According to the authors, this suggests a 
general, top-down influence based on the interpretation of the (missing) 
input. Brych and Händel (2020) conclude that their experiments reveal a 
modulation of eye blinking based on top-down, cognitive processes 
including prediction and attention in addition to bottom-up, sensory- 
based effects. 

In our previous work on the dynamics of eye blinking (Huber et al., 
2022), we could show that apparently strategic blinking in the form 
reported by Hoppe et al. (2018) for a visual task results also within the 
scope of a purely auditory attention task. We identified also a pre- 
stimulus decrease of blink likeliness dependent on the predictability of 
stimulus occurrences in time. In particular, pre-stimulus blink suppres
sion was weaker for lower task predictability. Although based only on a 
tentative exploration, the post-stimulus increase in blink likeliness 
appeared rather orchestrated with the manual (keypress) responses by 

participants used to indicate detection of the short, transient stimuli like 
in the experiment of Hoppe et al. (2018). In addition, we noted a very 
weak, but noticeable post-stimulus effect on blink likeliness even under 
merely “passive” listening conditions. In comparison, the involvement of 
manual responses under active, task conditions exerted a strong influ
ence on the magnitude, form, and coherence (across participants) of the 
temporal associations between stimulus onsets and eye blinks. 

Overall, these recent investigations into the dynamics of eye blinking 
within laboratory attention tasks leave us with the following picture. 
Clearly, the intrinsic, temporal characteristics of attention tasks exert a 
modulating effect on eye blink dynamics (Hoppe et al., 2018; Brych and 
Händel, 2020; Huber et al., 2022). The mechanism further includes a 
general, modality unspecific component besides an effect-amplifying 
component specific for the visual domain (Brych and Händel, 2020). 
Both top-down, cognitive, and bottom-up, sensory processes are 
involved in the regulation of eye blink dynamics whereas top-down 
processing incorporates aspects of prediction and attention (Brych and 
Händel, 2020). Especially the top-down component associated with 
prediction is further affected by perception modality (Brych and Händel, 
2020) and task predictability (Huber et al., 2022). Altogether, the 
domain within which stimuli are presented during a task, the task pre
dictability and also the involvement of manual responses within the task 
(van Dam and van Ee, 2005; Huber et al., 2022) appear as important 
factors determining both magnitude and form of the effect that temporal 
task characteristics exert on eye blink dynamics under otherwise 
controlled laboratory conditions. 

In the present work, we aim to add to this so far accumulated un
derstanding, a specific clarification of the roles of task predictability and 
involvement of manual responses on eye blink dynamics. In particular, 
we hypothesize that (i) eye blink dynamics is affected by top-down, 
cognitive processing associated with prediction also in the case of an 
auditory attention task. However, we further hypothesize that this effect 
is modulated by both (ii) the involvement of manual response as well as 
(iii) task predictability, such that under conditions of low predictability 
and no involvement of manual response the influence of prediction, 
although yet present, becomes very weak and hence hard to detect. To 
this end, we build on the experimental design of our previous work 
(Huber et al., 2022), but extend the number of auditory signals differing 
in predictability from two to four signals and incorporate a second, 
mainly cognitive, counting task not involving any manual response as a 
contrast to the original detection task involving keypress responses upon 
stimulation. The increase in the variety of signals with different pre
dictability shall allow us a refined view on how the temporal associa
tions between external signal and eye blinking change upon small step- 
wise changes in signal predictability, a variable rarely explicitly inves
tigated in psychophysiological experiments. Contrasting the results from 
a task involving manual response with the results from a task not 
involving a manual response under otherwise constant conditions will 
shed light directly on the influence of this factor. Altogether, we think to 
arrive thus finally at a more comprehensive picture of how the intricate 
interrelations between attention, perception and sensory-motor coor
dination are reflected in eye blink dynamics. 

Due to the focus of our hypotheses on prediction, the primary focus 
of our analyses will be on pre-stimulus eye blink dynamics. Neverthe
less, we will report and explore also how post-stimulus eye blinking is 
affected by varying involvement of motor response and task predict
ability. We note that there are no specific hypotheses involved in that 
respect though. 

2. Method 

2.1. Experimental setup 

All participants were subject to two subsequent experimental con
ditions, each of a total duration of 12 min. During each of the experi
mental conditions, participants were seated at a distance of about 60 cm 
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from a Tobii TX300 eye-tracker and instructed to direct their gaze to
wards the displayed, static image of a landscape (Kruczinsky, 2017). 
Besides, participants were presented 200 short sine tone bursts of 50 ms 
total duration with linear on- and offsets of 10 ms and a frequency of 
440 Hz in each of the two experimental conditions. The tone bursts were 
presented diotically via headphones and sound levels were adjusted by 
each participant prior to the start of the experiment such that they could 
comfortably listen to the sine tone bursts for an extended period. In one 
of the experimental conditions, participants were required to indicate 
detection of each of the stimuli via a keypress. In the other condition, 
participants were required to silently count the stimuli. In order to keep 
concentration continuously high over the entire period of the counting 
condition, participants were instructed to count until they reached the 
number 17 and then restart at the number 1. The order of the two 
conditions was counterbalanced across participants. 

Four different series of 200 sine tone bursts were prepared in order to 
vary predictability, i.e. how easy or difficult it is to predict when the next 
sine tone would occur based on the timings of the previous ones. 
Therefore, the time intervals between the onsets of two consecutive sine 
tone bursts were produced such that their predictability was located in 
the range between Gaussian noise and Brownian motion. In our earlier 
study (Huber et al., 2022), we had used Gaussian noise and Brownian 
motion as models for unpredictable and predictable tone series. To 
produce further time series with predictabilities between those two 
signal classes, we built on their spectral properties (Heneghan and 
McDarby, 2000). Whereas Gaussian noise exhibits a constant power 
spectral density, i.e. it is independent of frequency, the one of Brownian 
motion decreases proportionally to 1/fβ with f denoting frequency and 
the exponent β = 2. Signals decreasing at rates corresponding to β be
tween 0 and 2 correspond to signals with intermediate predictabilities. 
Thus, we produced four samples of white noise with n = 200 and 
manipulated their power spectral densities such that they decreased 
proportionally to 1/fβ with β = 0, 0.6, 1.4 and 2.0. Subsequently, we 
adjusted the means and standard deviations of the four signals in the 
time domain such that they all accounted for 3.59 s and 0.8 s, respec
tively. Thus, the four signals, representing finally the four used series of 
inter-stimulus-intervals, were equal with respect to overall frequency 
and variability, but differed in predictability. The resulting signals are 
depicted in Fig. 1. Finally, we recomputed the spectral exponent of our 
four random samples by fitting a linear regression line to a double- 
logarithmic plot of frequency versus power spectral density resulting 
in β = 0.02, 0.75, 1.18 and 1.99. The differences between these 

exponents and the ones used for production are due to the finite sample 
size of the generated random numbers. 

The four variations in predictability and the two possibilities of the 
order of keypress and counting conditions give rise to eight experimental 
groups in total. The participants were randomly assigned to one of those 
eight groups. 

2.2. Participants 

In total, 99 participants (64 female, 34 male, 1 not specified; mean 
age [SD]: 21.82 [1.84] years, range: 18–27 years) took part in the 
experiment in exchange for course credit. These do not include five more 
participants associated with unusable datasets (>15 % of missing data). 
All participants had normal or corrected-to-normal vision. No partici
pant reported eye or ear diseases or difficulties. Participants were aware 
that their eye movements were recorded, but were not told details about 
the purpose of the task before the experiment was finished to prevent 
conscious control of blinking behavior. Written informed consent was 
obtained from all participants and all experimental procedures were 
carried out in accordance with the guidelines of the German Psycho
logical Society and approved by the local ethics committee. 

In our previous study (Huber et al., 2022), we had found that group 
sizes of about 20 participants each sufficed to reveal statistically clearly 
distinct pre-stimulus blink dynamics for very low (β = 0.03) and high (β 
= 2.24) task predictabilities under the condition of required manual 
responses. Hence, we concluded that a minimal sample size of 20 par
ticipants for each level of task predictability should suffice to at least 
reproduce that finding, assuming that it corresponded to a robust effect. 
In order to be able to capture eventually more subtle effects due to task 
order or participants only mentally responding to the stimuli we 
increased the envisaged sample size to 25 per level of predictability and 
stopped data acquisition as soon as the number of participants exceeded 
100. 

2.3. Data acquisition 

Blink onsets were detected using an infrared eye-tracking device 
with a sampling frequency of 300 Hz (Tobii TX300; Tobii Technology 
AB, 2014) and the noise-based blink detection algorithm developed by 
Hershman et al. (2018). When closing the eyelids during blinking, the 
eye-tracking device loses track of the participants’ pupils and these ar
tifacts in the pupillometric data can be used to compute blink onsets. The 

Fig. 1. Time intervals (in s) between two consecutive onsets of sine tone bursts versus number of appearance of the respective pair of tone bursts in the respective 
tone series. The first interval corresponds to the duration from the beginning of the respective experimental condition to the onset of the first sine tone burst. The 
means (red line) and standard deviations (blue shaded region) are the same for all four signal types, while their predictabilities are different which may be quantified 
by the exponent β characterizing their power spectral densities. The exponents for the depicted signals of very low, low, medium and high predictability were 
obtained to β = 0.02, 0.75, 1.18 and 1.99, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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blink onsets were then treated as point processes in our analysis of the 
temporal blink distributions with respect to the tone events (see below). 
Using this procedure, we found similar statistics concerning overall 
mean blink rates (mean [SD]: 20.69 [12.74] blinks/min) and fractal 
scaling (mean [SD]: 0.63 [0.12]) compared with studies using magnetic 
search coils (see e.g. Garcia et al., 2011), manual video analysis (e.g. 
Naase et al., 2005), EEGs and EOGs (e.g. Oh et al., 2012a; Oh et al., 
2012b; Shin et al., 2015; Paprocki and Lenskiy, 2017). 

We used only the pupillometric data of the dominant eye of each 
participant. The dominant eye of each participant was determined by a 
simple alignment test after the two experimental conditions. In partic
ular, participants were asked to stretch out one of their arms and form a 
hole with their thumb and index finger. By looking through this hole 
with both eyes open they were then asked to fixate a plug socket located 
at the wall of the laboratory at a distance of about 3 m. Without moving, 
they were then asked to close one of their eyes and subsequently the 
other. Upon closing the dominant eye, the plug socket would appear to 
move out of the hole formed by the fingers, while upon closing the non- 
dominant eye it would not. 

2.4. Data analysis 

2.4.1. Mean blink rate 
Besides pre- and post-stimulus blink distributions, we assessed also 

how the different experimental conditions affect the mean blink rate. 
Linear mixed-effects models were used to determine if and how mean 
blink rate depended on the involvement of a manual response (keypress 
condition versus silent counting condition; within-subjects factor), as 
well as the order of experimental conditions (first keypress, then 
counting condition versus first counting, then keypress condition; 
between-subjects factor) and the four levels of predictability (i.e. very 
low, low, medium, high; between-subjects factor), and all interactions 
between those three variables. In order to do so, we first constructed a 
complete model incorporating all three independent variables and their 
interactions as fixed factors, while random intercepts were included to 
take into account inter-individual differences in an overall propensity to 
blink. Subsequently, we constructed reduced models by step-wise 
removal of non-significant fixed factors. In order to investigate the in
fluence of the predictability of the stimulus series, we considered the 
following orthogonal contrasts referring to the nomenclature provided 
in Fig. 1: very low and low predictability versus medium and high 
predictability, very low versus low predictability, and medium versus 
high predictability. 

2.4.2. Pre- and post-stimulus blink distributions 
In order to assess how blink likeliness is affected by the temporal 

distribution of the acoustic stimuli over the course of the experimental 
conditions, we first determined individual temporal blink distributions 
centered on the timings of the sine tone burst onsets. In order to do so, 
we subdivided all 1.5 s-intervals before and after each presented sine 
tone into 15 short 100 ms bins and counted the number of blink onsets in 
each of those bins over the full duration of 12 min for each experimental 
condition. Subsequently, we divided the resulting individual blink dis
tribution by the total number of eye blinks during the respective 
experimental condition of the respective participant. Finally, we aver
aged these individual, normalized temporal blink distributions within 
each of the 2 × 2 × 4 = 16 combinations of involvement of manual 
response, order of experimental condition, and predictability of sine 
tone series. These resulting averaged distributions for each combination 
of independent variables thus represent stimuli-centered temporal mean 
blink proportion (MBP) distributions specifying which proportion of all 
eye blinks occurred during a specific 100 ms interval in the two 1.5 s 
time windows before and after the onsets of sine tone bursts, giving rise 
to the denotation as pre-stimulus and post-stimulus blink distributions, 
respectively. 

2.4.3. Statistical analyses 
To analyze differences in mean blink proportion due to the three 

independent variables and their interactions we used again linear-mixed 
effects models as outlined above for mean blink rate but, in this case, for 
the mean blink proportions within each of the 15 time bins for both pre- 
and post-stimulus blink distributions. The time dependence of blink 
likeliness (with respect to stimuli onsets) was further explicitly modeled 
in both time windows and for each combination of independent vari
ables based on our previous study (Huber et al., 2022). Pre-stimulus 
blink distributions were thus fitted with a linear regression model 

Bpre(t) = c1 + c2t (1)  

where t denotes the time relative to the onset of sine tone bursts, the 
intercept c1 denotes a fit coefficient describing the strength of pre- 
stimulus blink suppression, and the slope c2 denotes a fit coefficient 
describing the pre-stimulus (linear) rate of change in blink likeliness 
towards the onset of the next stimulus. 

Post-stimulus blink distributions were fitted with the model intro
duced in our previous work (Huber et al., 2022), consisting of the su
perposition of a Fermi function taking into account the post-stimulus 
release of blink suppression, a Gaussian function accounting for the 
subsequent, transient blink overcompensation and an offset accounting 
for a minimal MBP: 

Bpost(t) = k1 +
k2

1 + exp
(
− t+k3

k4

)+ k5exp

(

−
(t − k6)

2

2k2
7

)

(2)  

Here, the various fit coefficients are denoted by ki, i= 1, …,7, while t 
denotes again the time relative to the onset of sine tone bursts. Whereas 
k1 describes the offset accounting for a minimal MBP, the Fermi function 
is described by the second term in Eq. (2) including a parameter k2 to 
describe the magnitude of the release of blink suppression, a parameter 
k3 determining the time of the release, and a parameter k4 determining 
the time span over which the release occurs. The third term in Eq. (2) 
corresponds to the Gaussian function and includes a parameter k5 
describing the magnitude of blink overcompensation, a parameter k6 
determining when the overcompensation reaches its peak, and a 
parameter k7 determining the width of the Gaussian curve. 

2.4.4. Software 
Production of the stimuli series and power spectral analyses were 

conducted with MATLAB (MathWorks, Natick, USA). All other data 
processing and statistical analyses were conducted using R (R Core 
Team, 2021) and RStudio (RStudio Team, 2021) using the packages 
tidyverse (Wickham et al., 2019), ggpubr (Kassambara, 2020), nlme 
(Pinheiro et al., 2021), pastecs (Grosjean and Ibanez, 2018), lme4 (Bates 
et al., 2015), performance (Lüdecke et al., 2021), RcmdrMisc (Fox, 
2022). 

3. Results 

3.1. Mean blink rate (MBR) 

MBRs (±standard errors) ranged from 13.52 ± 3.73 to 26.75 ± 4.93 
blinks/min in the various experimental conditions realized in this 
experiment. MBRs showed significant variance across participants, SD 
= 11.86 blinks/min with a 95 %-confidence interval of [10.21, 13.78] 
blinks/min, χ2(1) = 141.42, p < 0.0001, ΔAIC = − 139.4. However, 
MBR turned out rather robust against differences between the various 
experimental conditions as none of the linear-mixed effects models 
including one or more of the three considered fixed factors (type of task, 
order of tasks, predictability) and their interactions resulted in a sig
nificant improvement over the baseline model incorporating, besides the 
grand mean, only random intercepts to account for inter-individual 
differences in MBR, see Table 1. None of the included factors or their 
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interactions had a significant influence on MBR (using a Benjamini- 
Hochberg correction of significance levels with a false detection rate 
of 5 % for multiple comparisons). The marginal and conditional co
efficients of determination obtained by the approach of Nakagawa et al. 
(2017) for a full model including all three fixed factors and their in
teractions yield r2(marginal) = 0.09 and r2(conditional) = 0.89, 
respectively, indicating the dominant contribution from inter-individual 
differences to the MBR in comparison to the impact of independent 
variables alone (marginal coefficient of determination). 

3.2. Eye blink dynamics 

We first investigated if there is a significant effect of task order on the 
eye blink proportion distributions centered on the occurrence times of 
the stimuli. Therefore, we evaluated a linear mixed-effects model 
including all three fixed factors (task order, task type, and predictability) 
and their interactions within each of the 100 ms time bins in both 1.5 s 
time windows before and after the stimuli. Significance levels were 
corrected for multiple comparisons following the procedure of 
Benjamini-Hochberg using a false detection rate of 5 %. Since neither 
task order nor any interaction including task order affected blink pro
portion at any of the time bins, we omitted task order from the fixed 

factors and repeated the procedure with mixed-effects models including 
the remaining two factors and their interactions at each time bin. Within 
time bins centered at − 250 ms and at +150 ms (negative/positive signs 
indicate before/after stimulus onsets) mean blink proportions were 
significantly larger in the counting task than in the keypress task. Within 
the three time bins ranging from +700 to +1000 ms, the opposite was 
the case, i.e. mean blink proportions were significantly larger in the 
keypress task than in the counting task. Within the time bin centered at 
− 150 ms, the mean blink proportion for the case of very low task pre
dictability was significantly larger than the one for the case of low task 
predictability in the keypress task, but not in the counting task. Apart 
from these differences, bin-wise mean blink proportions were similar in 
both keypress and counting conditions as well as for different task 
predictabilities, see Fig. 2. 

In Fig. 3(a), we compare the bin-wise mean blink proportions ob
tained for the keypress task with the ones obtained for the counting task, 
regardless of task predictability. We find that in the pre-stimulus region, 
mean blink proportions are larger in the counting task than in the key
press task. Differences are significant at the time bins centered at − 450, 
− 250 and − 150 ms (yellow shaded area in Fig. 3 for times <0). The 
mean blink proportion at the time bin centered at +150 ms is also 
significantly larger in the counting task than in the key press task (yel
low shaded area in Fig. 3 for times >0), indicating that blink suppression 
is earlier released in the counting task than in the keypress task. The 
duration of post-stimulus blink compensation is longer in the keypress 
task than in the counting task, indicated by the mean blink proportions 
yielding significantly larger values from +700 to +1000 ms in the 
keypress than in the counting task (red shaded area in Fig. 3). In Fig. 3(a) 
also the linear and nonlinear functions fitted to the mean blink pro
portions according to Eqs. (1) and (2) for the time windows before and 
after stimuli onsets, respectively, are depicted. The intercepts and slopes 
of the regression lines fitted to the pre-stimulus distributions are 
depicted in Fig. 3(b) and (c), respectively. The fit coefficients for the 
nonlinear models fitted to the post-stimulus mean blink proportions are 
provided in Table 2. Note that we incorporated both nonlinear models in 
one combined model to assess the significance of the differences be
tween the various coefficients. Fig. 3(b) and (c) illustrate that both in
tercepts and slopes of the linear fits to the pre-stimulus blink proportion 
distributions differ between the keypress and the counting task. Whereas 
in the keypress task the intercept yields 1.45 % with a 95 %-confidence 
interval of [1.37, 1.53] %, the intercept in the counting task yields 1.89 

Table 1 
Comparison of linear mixed-effect models for MBR in dependence of the 
considered independent variables and inter-individual differences. The baseline 
model including only random intercepts (besides the grand mean) yields an 
Akaike information criterion (AIC) of 1440.0. The numbers provided in the table 
for the degrees of freedom (df), the relative AICs (ΔAIC), the χ2 statistics, and the 
p-values of the considered models account always for the relative difference of 
the respective model to the baseline model. The type of task is denoted shortly as 
the variable “type”, while “predictability” denotes the predictability of stimulus 
series, and “order” denotes the order of tasks (keypress followed by counting 
versus counting followed by keypress).  

MBR ~ 1 + (1|ID) + … df ΔAIC χ2 p-value 

Type  1  1.7  0.28  0.60 
Predictability  3  3.2  2.79  0.43 
Order  1  1.9  0.12  0.73 
Predictability*order  7  4.8  9.13  0.24 
Order*type  3  1.0  4.97  0.17 
Type*predictability  7  5.4  8.53  0.29 
Type*predictability*order  15  6.9  23.04  0.08  

Fig. 2. Bin-wise mean blink proportions, for both keypress and counting conditions as well as for the four different task predictabilities, versus time before (negative 
sign) and after (positive sign) stimulus onsets. All 99 participants were subject to both the keypress and the counting task, whereas n denotes the number of par
ticipants being subject to the respective task predictability. Error bars represent standard errors of the means. Background colors indicate time bins in which mean 
blink proportions differed significantly: in the yellow shaded regions mean blink proportions were significantly larger in the counting task than in the keypress task; 
in the red shaded regions mean blink proportions were significantly larger in the keypress task than in the counting task; in the blue shaded region the mean blink 
proportion for the case of very low task predictability was significantly larger than the one for the case of low task predictability. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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% with a 95 %-confidence interval of [1.74, 2.04] %. The slopes in the 
keypress and counting tasks yield 0.0080 %/s with a 95 %-confidence 
interval of [0.0071, 0.0089] %/s and 0.0047 %/s with a 95 %-confi
dence interval of [0.0030, 0.0064] %/s, respectively. Note that since the 
slopes always correspond to decreasing values of blink proportion, they 
were multiplied by a factor of − 1 for convenience. Overall, pre-stimulus 
blink likeliness decreases faster and to smaller values in the keypress 
task than in the counting task. Post-stimulus blink likeliness increases 
sooner and yields a narrower region of blink compensation in the 
counting task than in the keypress task. However, due to large standard 
errors, the coefficients for the two nonlinear models fitted to post- 

stimulus blink proportion distributions do not differ significantly from 
each other. The only significant coefficients in Table 2 are k3 and k6 
yielding a blink suppression release at 290 ms, t(16) = 7.21, p = 2.08 ×
10− 6, and a blink compensation maximum at 562 ms, t(16) = 2.36, p =
0.031, respectively. 

We also fitted regression lines to the pre-stimulus blink proportion 
distributions obtained for the four different task predictabilities in both 
the keypress and counting tasks. Their intercepts and slopes including 
their 95 %-confidence intervals are depicted in Fig. 4. In the keypress 
task, the intercepts (always directly followed by their 95 %-confidence 
intervals in the following) yield 2.03 % [1.79, 2.27] %, 1.28 % [0.89, 
1.67] %, 1.31 % [1.14, 1.48] %, and 1.14 % [0.84, 1.44] %, for very low, 
low, medium and high task predictabilities, respectively. In the counting 
task, the intercepts yield 2.18 % [1.92, 2.43] %, 1.67 % [1.39, 1.94] %, 
1.74 % [1.52, 1.96] %, and 1.96 % [1.71, 2.21] %, for very low, low, 
medium and high task predictabilities, respectively. Hence, moving 
from the keypress to the counting task does not only lead to an overall 
increase of the intercepts (indicating an overall decrease of blink sup
pression), but also to a loss in contrast between the influence of different 
task predictabilities. Note especially that the 95 %-confidence intervals 
of the very low task predictability and the higher task predictabilities do 
not overlap in the keypress task whereas they do in the counting task. A 
similar result is obtained in the case of the slopes. In the keypress task, 
the slopes (like the intercepts, they are always directly followed by their 
95 %-confidence intervals, and they are multiplied again by − 1 for 
convenience) yield 0.0032 %/s [0.0004, 0.0060] %/s, 0.0106 %/s 
[0.0061, 0.0151] %/s, 0.0087 %/s [0.0067, 0.0107] %/s, and 0.0098 
%/s [0.0063, 0.0132] %/s, for very low, low, medium and high task 
predictabilities, respectively. In the counting task, the slopes yield 
0.0018 %/s [− 0.0012, 0.0048] %/s, 0.0072 %/s [0.0041, 0.0104] %/s, 
0.0056 %/s [0.0030, 0.0081] %/s, and 0.0044 %/s [0.0015, 0.0073] 
%/s, for very low, low, medium and high task predictabilities, respec
tively. Besides an overall decrease of slopes and loss of contrast when 
moving from the keypress to the counting task, we also note that in the 
counting task, the 95 %-confidence interval of the very low task pre
dictability includes zero, whereas in all other cases, the slopes differ 
significantly from zero. 

Fig. 3. Bin-wise mean blink proportions, for both keypress and counting con
ditions, versus time before (negative sign) and after (positive sign) stimulus 
onsets, regardless of task predictability, are shown in panel (a). Hence, the data 
points stem from all 99 participants included in the study. Background colors 
indicate time bins in which mean blink proportions differed significantly: in the 
yellow shaded regions mean blink proportions were significantly larger in the 
counting task than in the keypress task; in the red shaded regions mean blink 
proportions were significantly larger in the keypress task than in the counting 
task. The thick lines correspond to the linear (time < 0) and nonlinear (time >
0) models fitted to the blink proportion distributions according to Eqs. (1) and 
(2). The intercepts and slopes of the regression lines fitted to pre-stimulus blink 
proportion distributions and their 95 %-confidence intervals are depicted in 
panels (b) and (c) for both task types. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Coefficients of the nonlinear models fitted to the post-stimulus blink proportion 
distributions obtained for the two task types irrespective of predictability, see 
Fig. 2. Note that in order to assess the significance of differences between the two 
models, we incorporated both in a combined model. The coefficients of the 
model fitted to the post-stimulus distributions in the case of the keypress task are 
the ki with i = 1, …,7 provided below. The coefficients of the model depicted in 
Fig. 2 for the post-stimulus distributions in the case of the counting task are 
given by ki + Δki with i = 1, …,7 and both the ki and Δki provided below.  

Coefficient Estimate Standard error t-value p-value 

k1 [%/100 ms]  0.100  2.450  0.041 0.968 
Δk1 [%/100 ms]  0.000  5.649  − 0.018 0.986 
k2 [%/100 ms]  2.521  1.522  1.656 0.117 
Δk2 [%/100 ms]  0.449  5.204  0.086 0.932 
k3 [ms]  290.34  40.270  7.210 2.08 × 10− 6 

Δk3 [ms]  4.238  55.860  0.076 0.941 
k4 [ms]  50.000  36.633  1.365 0.191 
Δk4 [ms]  0.000  70.373  0.000 1.000 
k5 [%/100 ms]  2.205  1.196  1.844 0.084 
Δk5 [%/100 ms]  0.020  2.882  0.007 0.995 
k6 [ms]  562.12  237.75  2.364 0.031 
Δk6 [ms]  − 282.69  758.03  − 0.373 0.714 
k7 [ms]  468.28  362.66  1.291 0.215 
Δk7 [ms]  − 104.48  483.71  − 0.216 0.831  

Fig. 4. The (a) intercepts and (b) slopes of the regression lines fitted to pre- 
stimulus blink proportion distributions and their 95 %-confidence intervals 
for the four different task predictabilities for both task types. The colour coding 
used to differentiate predictabilities is the same as in Fig. 2. 
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4. Discussion 

4.1. Mean blink rate (MBR) 

In line with the literature (Doughty and Naase, 2006) we found 
considerable inter-individual variation of MBR. Doughty (2001) pro
vided evidence that MBR turns further out sensitive to the type of ac
tivity during which it is assessed, e.g. yielding 1.4–14.4 blinks/min 
during reading, 8.0–21.0 blinks/min during primary gaze or 10.5–32.5 
blinks/min during conversation for normal adults. In the present study, 
MBR ranged overall from 13.5 to 26.8 blinks/min for the different 
implemented experimental conditions. However, MBR appeared rather 
robust against the rather subtle differences between these experimental 
conditions since neither the type of task, i.e. indicating detection of 
acoustic stimuli by a keypress or silently counting stimuli, nor the pre
dictability of the stimuli series nor the order of the two conditions 
yielded a significant impact on MBR. 

Also earlier studies employing similar types of attention tasks report 
similar values of MBR such as about 19.0 blinks/min (Hoppe et al., 
2018), 14.3–24.4 blinks/min (Brych and Händel, 2020) or 20.2–30.0 
blinks/min (Huber et al., 2022). While this could mean that MBR might 
be sensitive to structural or intrinsic temporal properties of an overall 
activity while being rather robust against slight changes given that the 
overall type of activity remains unchanged, it could also mean that it is 
less the type of involved activity than rather its intrinsic structural, 
temporal properties which in the first place determine the seemingly 
different ranges of MBRs associated with different types of activities. In 
the present study, the first two moments of the temporal distributions of 
stimuli, i.e. its mean and its standard deviation, were the same in all 
experimental conditions. This implies that the overall amount of infor
mation that was required to be processed as well as its overall variation 
was kept constant throughout the experiment, which may be a simple 
reason for the robustness of MBR against other structural properties of 
the task. 

4.2. Eye blink dynamics 

4.2.1. Influence of modality 
In contrast to MBR, the dynamical features contained in the inves

tigated temporal eye blink distributions could discriminate between the 
task variations realized by our different experimental conditions. 
Furthermore, our results show that significant pre-stimulus blink sup
pression is present in all but one of eight conditions, which, however, 
always represent realizations of auditory attention tasks. This suggests 
that a temporal prediction component of attentional processes contrib
utes to the modulation of eye blinking also in the auditory domain and 
does, in principle, not require visual stimulation. However, taking into 
account the explicit comparison of visual and auditory domains pro
vided by Brych and Händel (2020) then suggests that the effect is 
considerably enhanced in the visual domain, yet still present, although 
to a lower extent in the auditory domain. This is in line with both the 
notions of general attention exerting a dynamical, task-dependent 
modulation of eye blinking (Oh et al., 2012b) and attention as a pro
actively organizing mechanism elaborating a forecast of future stimuli in 
order to prepare an organism for optimal processing of sensory input 
(Sokolov, 1963; Klix, 1971). Such general attentional mechanisms 
should remain active also under conditions when stimuli are presented 
merely in the auditory domain since inattentiveness to external cues still 
increases the risk of missing relevant information. 

It has been shown that during blinking neural activity is decreased in 
areas designated to the processing of environmental information such as 
particularly the primary visual area (Hari et al., 1994) and, more 
generally, the dorsal and ventral attention networks (Nakano, 2015; 
Nakano et al., 2013). At the same time, neural activity is increased in 
areas dedicated primarily to inner processing of information such as the 
default mode network, the hippocampus and the cerebellum (Nakano, 

2015; Nakano et al., 2013). Upon re-opening the eyes, attention shifts 
back to neural areas for external information processing (Ang and Maus, 
2020; van Bochove et al., 2013) while activity in non-sensory areas is 
reduced (Nakano, 2015). Hence, eye blinking in the “wrong” moment 
can be expected to exert a general, obstructive effect also on the pro
cessing of stimuli in non-visual domains which is indeed suggested by 
our results. A domain-specific enhancement of this effect in the case that 
stimuli are indeed presented in the visual domain can be expected due to 
the simple fact that in this case, the risk to miss relevant information by 
wrongly timed blinking is drastically increased due to the physical 
blockade of the visual input, i.e. a domain-specific additional risk factor. 

4.2.2. Influence of active, manual response 
Our results further revealed that the modulation of eye blink dy

namics by temporal task structure, to which we referred as eye blink 
synchronization in our former work (Huber et al., 2022), is also 
enhanced if an active, manual response is required from participants 
compared to a mainly cognitive task (i.e. silently counting stimuli) be
sides another, weaker modulation by the predictability of the presented 
stimuli series. The difference between the two types of tasks manifests in 
both pre-stimulus and post-stimulus blink likeliness distributions. Con
cerning pre-stimulus distributions, the involvement of a manual 
response increases both the magnitude of the pre-stimulus blink sup
pression and the contrast between different levels of signal predict
ability. Concerning post-stimulus distributions, the release of blink 
suppression appears slightly earlier in the counting than in the keypress 
task, while the post-stimulus blink compensation is considerably less 
extended over time in the counting than in the keypress task. 

Influences on eye blinking from other motor activity has been noted 
earlier (Ito et al., 2003; van Dam and van Ee, 2005; Cong et al., 2010). 
Particularly, Cong et al. (2010) suggest the orchestration of blinking and 
manual motor activity via the indirect influence of shared central 
clocking mechanisms determining the temporal regulation of both 
manual movements and eye blinking. In the present case, this could 
mean that preparation and timing of the manual motor response upon 
stimulus detection co-regulates the timing of blink execution enhancing 
thereby the synchronization with the external signal in contrast to the 
mainly cognitive task lacking the requirement of timing additional 
motor activity. This is line with the finding in our previous experiment 
(Huber et al., 2022) indicating a common neural process releasing 
simultaneously both the suppression of eye blinking and manual motor 
response. The apparently relatively earlier post-stimulus release of blink 
suppression in the case of the counting task also suggests the integration 
of both manual and eye movement motor pathways via a common, 
central bottleneck during the keypress task. 

The less extended duration of blink compensation in the case of the 
counting task puts emphasis on the relation between cognition and eye 
blinking. Whereas in the case of the keypress task, cognitive evaluation 
of the stimulus temporarily concludes with detection and release of 
motor action, the counting task further requires continuous updating of 
the stimulus count. Eye blinks occur particularly at moments when in
formation processing during a given task is transiently finished 
(Wascher et al., 2015). Nakano et al. (2009) showed that the eye blinks 
of participants watching movie clips were synchronized with implicit 
break points requiring less attention such as the conclusion of an action, 
during the absence of the main character, during a long shot, during 
repeated presentations of a similar scene, in addition to explicit break 
points such as scene changes. Siegle et al. (2008) suggested that blinks 
particularly flank moments of change in cognitive load in agreement 
with the notion of blinks representing the temporarily end of cognitive 
processing and a release of information from working memory (Ichi
kawa and Ohira, 2004). 

Furthermore, although in the visual domain, eye blinking has been 
shown to be linked to mnemonic processes, resulting especially in a 
reduction in short-term memory capacity (Irwin, 2014), presumably 
caused by a reallocation of attention (Irwin, 2011) interfering 
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particularly with rehearsal mechanisms (Awh and Jonides, 2001). This 
view is, however, contrasted by recent findings identifying particularly a 
positive association of spontaneous eye blink rate during delay periods 
and performance in a working memory task (Ortega et al., 2022). While 
this might be related to dopaminergic activity affecting the maintenance 
and updating of representations in working memory (Westbrook and 
Braver, 2016), the seemingly divergent findings may besides also point 
towards the relevance of a fine temporal attunement between a variety 
of periodically varying processes in a network of intricately related 
physiological, neurological, and cognitive mechanisms, on top or 
instead of time-independent rate modulations. 

At least qualitatively, our results appear in line with these consid
erations, as particularly subvocal activity (verbal rehearsal) has been 
found to affect eye blinking (de Jong and Merckelbach, 1990). 
Furthermore, counting activity turned out especially associated to 
blinking since engaging in counting out loud increased blink rate 
significantly whereas reciting the alphabet had no comparable effect 
(Schuri and von Cramon, 1981). The moment between completed 
detection of a stimulus and updating of the stimulus count during our 
counting task might hence be seen as a natural breaking point at which 
blink likeliness is prone to accumulate. In the keypress task, the lack of 
the requirement to update the stimulus count and keep it actively in 
memory can, in contrast, lead to a more relaxed blink compensation 
before preparing for next stimulus. While this must remain speculation 
for now, it certainly puts further emphasis on the importance of exam
ining phasic features of eye blinking in addition to tonic ones in future 
studies, especially when aiming for further resolving the intricate in
terrelations between eye blinking and cognitive processes. 

4.2.3. Influence of predictability 
Finally, our experiment revealed a weak yet noticeable effect also of 

the predictability of the stimuli series on the eye blink dynamics. This 
serves also as a replication of the result of our previous study (Huber 
et al., 2022), in which we already noted a significant difference between 
the pre-stimulus blink distributions obtained for stimuli series with low 
and high predictability. 

In Fig. 5, we provide the intercepts and slopes of fitted regression 
lines to the pre-stimulus blink distributions obtained both in the present 
experiment and in our earlier work. Therein, the slopes and intercepts 
are plotted against the exponents β (characterizing the dependence of 
the power spectral densities on frequency) of the respective series of 
inter-stimulus-intervals used to vary task predictability within the two 
experiments. It is seen that the stimuli series with highest and lowest 
predictability in this study are very close to the ones of the earlier study 
in terms of predictability, i.e. β = 0.02 in the present study and β = 0.03 
in our earlier study for low predictability and β = 1.99 in the present 
study and β = 2.24 in our earlier study for high predictability (note that 
there have been two groups subject to high task predictability in our 
earlier study and hence the two respective data points in Fig. 5). More 
importantly, the resulting intercepts and slopes are in very good 
agreement with each other yielding highly overlapping confidence 
intervals. 

Although modulation of pre-stimulus blink suppression by task pre
dictability is clearly apparent from these results, it is intriguing that, 
while blink suppression appears especially weak for low predictability, 
it seems of comparable magnitude for all other considered pre
dictabilities. This might actually indicate a threshold at rather low levels 
of predictability, above which the influence of predictability on the eye 
blink dynamics remains stable. A possible explanation could be the in
fluence of two opposed factors within predictability with one being the 
actual objective predictability of the signal facilitating temporal pre
diction, while the other might be related to the increasing monotony of 
the task with increasing predictability possibly attenuating sustained 
attention. A refined exploration of the dependence of eye blink dynamics 
on the dimension of task predictability remains thus an interesting 
pathway for future research. 

Explicit consideration of the dimension of task predictability de
serves attention also due to the particularly weak effect on eye blink 
dynamics in the case of low predictability. In this case, the inter- 
stimulus-intervals characterizing the timings of stimuli correspond to 
Gaussian noise. However, timings of consecutive stimuli according to 
Gaussian noise, i.e. inter-stimulus-intervals being distributed according 
to a normal distribution with the mean representing the average time 
interval between consecutive stimuli, represent a rather typical choice in 
experimental psychological research (e.g. in temporal jittering of stim
ulus onsets). Yet they turn out to be especially poorly suited to probe the 
temporal prediction component of attentional processes as our results 
suggest. In fact, our results show that prediction affects eye blink dy
namics also during an auditory task involving no active, manual 
response to stimuli. However, if task predictability becomes as low as is 
the case for Gaussian noise, the effect appears insignificant, which is 
why we think that the small, yet still present effect could not be detected 
in the earlier study by Brych and Händel (2020). To their solid body of 
conclusions, we would hence add that pre-stimulus effects in prepara
tion to sensory input are also in effect in the auditory domain, but to a 
considerably smaller extent. The perception modality clearly modulates 
the magnitude of the effect, but the general attentional mechanisms 

Fig. 5. (a) Intercepts and (b) slopes of regression lines fitted to pre-stimulus 
blink proportion distributions resulting from auditory attention tasks 
involving indication of stimulus detection via a keypress in the present exper
iment (red points and error bars) and in our previous experiment (Huber et al., 
2022; blue points and error bars). The intercepts and slopes are plotted against 
the exponents β characterizing the dependence of the power spectral densities 
on frequency of the respective series of inter-stimulus-intervals used to vary 
task predictability within the two experiments. Low values of β indicate low 
predictability. Note that in our previous study, two participant groups were 
subject to the higher task predictability; hence, the two data points at β = 2.24 
for both, intercept and slope. Error bars correspond to 95 %-confidence in
tervals. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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regulating eye blink dynamics remain probably unchanged. 

4.2.4. Limitations and outlook 
In our experiments, the eye blink dynamics has been explored via 

eye-tracking utilizing the transient loss of pupillometric data while 
blinking. Thus, different forms of eye blinking such as spontaneous, 
reflex or partial blinks (Ousler et al., 2014; Stern et al., 1984) cannot be 
distinguished and also sporadic departure of the gaze from the display 
cannot be entirely ruled out. Although it can be assumed that most of the 
temporarily missing pupillometric data stems from spontaneous eye 
blinking, attempts to replicate and refine our findings using other means 
of measuring eye blinking such as manual video analysis, EEG or EOG 
would appear valuable directions for future research. As summarized by 
Rodriguez et al. (2017), eye blinking is further influenced by many other 
internal and external factors like physiological or psychological disor
ders or diseases, age, or also physico-chemical, environmental condi
tions such as wind, temperature, illumination. An eventual further 
moderating or modulating impact of such factors on the modulation of 
eye blinking by task structural or temporal components could also not be 
resolved by our controlled laboratory experiments and hence remains 
open for future investigations. 

5. Conclusion 

We conclude that eye blink dynamics is affected by top-down, 
cognitive processing associated with prediction also in purely auditory 
attention tasks, although to a lesser extent than in visual attention tasks. 
The partial synchronization of eye blinking with temporal task charac
teristics is further modulated by the involvement of active, manual re
sponses in the task, i.e. it is more pronounced in the case that a 
respective manual response such as pressing a key is required from 
participants than in the case that processing of stimuli can be done 
mainly cognitively by e.g. silent counting of stimuli. Task predictability 
turns out to be another, but weaker modulating factor of this eye blink 
synchronization. Especially under unpredictable conditions, e.g. when 
inter-stimulus-intervals are distributed according to Gaussian noise, the 
modulation of eye blink dynamics can become so weak that it could 
hardly be noticed. This has the important implication that, if especially 
this general, modality-unspecific prediction component involved in 
attention is what is aimed to probe, other forms of temporally distrib
uting stimuli, or assessing even a range of tuned task predictability like 
in the present work, should rather be employed. Concerning particularly 
eye blinking this means, that prediction appears to remain an active, 
contributing factor for the moment-to-moment, dynamical regulation of 
eye blinking also in the case of non-visual tasks. Only its relative weight 
with respect to other regulative factors seems to be affected by modality, 
whereas the latter further depends on the eventual involvement of other, 
especially manual, motor response to stimuli, and the rarely explicitly 
considered predictability of the task at hand. Nevertheless, also in that 
case, general attentional processes and particularly prediction remain 
substantial factors underlying the dynamical regulation of eye blinking. 
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