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Introduction: Many physiological signals yield fractal characteristics, i.e., finer details at
higher magnifications resemble details of the whole. Evidence has been accumulating
that such fractal scaling is basically a consequence of interaction-dominant feedback
mechanisms that cooperatively generate those signals. Neurodegenerative diseases
provide a natural framework to evaluate this paradigm when this cooperative function
declines. However, methodological issues need to be cautiously taken into account in
order to be able to provide reliable as well as valid interpretations of such signal analyses.

Methods: Two conceptually different fractal analyses, i.e., detrended fluctuation analysis
(DFA) and analysis of cumulative distributions of durations (CDDs), are applied to
actigraphy data of 36 geriatric in-patients diagnosed with dementia. The impact of the
used time resolution for data acquisition on the assessed fractal outcome parameters is
particularly investigated. Moreover, associations between these parameters and scores
from the Mini-Mental-State-Examination and circadian activity parameters are explored.

Results: Both analyses yield significant deviations from (mono-)fractal scaling over the
entire considered time range. DFA provides robust measures for the observed break-
down of fractal scaling. In contrast, analysis of CDDs results in measures which highly
fluctuate with respect to the time resolution of the assessed data which affects also
further derived quantities such as scaling exponents or associations with other (clinically
relevant) assessed parameters.

Discussion: To scrutinize actigraphic signal characteristics and especially their
(deviations from) fractal scaling may be a useful tool for aiding diagnosis,
characterization, and monitoring of dementia. However, results may, besides contextual
aspects, also substantially depend on specific methodological choices. In order to
arrive at both reliable and valid interpretations, these complications need to be carefully
elaborated in future research.

Keywords: locomotor activity, fractal analysis, detrended fluctuation analysis, wrist-actigraphy, fractal scaling,
dementia, Alzheimer’s disease
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INTRODUCTION

It has been recognized in the cognitive sciences that multi-
component systems with a high degree of interaction and
feedback give rise to emergent signals which yield fractal scaling
indicating self-similarity or rather self-affinity in the case of
time series data (Holden et al., 2009; Kello et al., 2010).
That means that they exhibit surface-structural features which
remain (statistically) invariant over various (e.g., temporal or
spatial) scales. Since the functional system governing (human)
motor control represents a pivotal example for such a system
(Klix, 1971; Grafton et al., 2009; Hacker and Sachse, 2014),
it may not come as a surprise that a variety of physiological
signals regulated by the central nervous system such as
heart rate (Costa et al., 2002; Varotsos et al., 2007, 2019),
respiration rate (Peng et al., 2002), speech (particularly, acoustic
fluctuations in articulation; Kello et al., 2008), gait (Buzzi
et al., 2003) and prolonged, unconstrained standing (Duarte
and Zatsiorsky, 2001) among many others (see e.g., McGrath,
2016) exhibit fractal characteristics. This characteristics has
become recognized as an earmark of healthy physiology being
closely related to an organism’s ability to actively maintain
optimal levels of adaptability and flexibility under variable
(external) conditions (West and Deering, 1994; Van Orden
et al., 2003, 2005; West, 2009, 2010; McGrath, 2016). For
instance, in the case of electrocardiograms, the break-down
of the long range temporal correlations, i.e., the fractal
scaling, which characterizes healthy heart rate variability, was
found to be associated with high risk of sudden cardiac
death (Varotsos et al., 2007, 2019). This notion of health
challenges the traditional theory of homeostasis (West and
Deering, 1994; Van Orden et al., 2005; West, 2009, 2010) as
it ascribes the healthy organism an active role in balancing
exploratory versus sustaining behavior. Also human locomotor
activity assessed by wrist-actigraphy has repeatedly been
found to yield fractal regulation (Hu et al., 2004, 2009,
2013, 2016; Ohashi et al., 2004; Nakamura et al., 2007,
2013a, 2016; Paraschiv-Ionescu et al., 2008; Aybek et al., 2012;
Sano et al., 2012).

Detrended fluctuation analysis (DFA) has been repeatedly
applied to activity data of subjects with dementia. DFA quantifies
the magnitude of activity fluctuations as a function of time
scale (Hu et al., 2004, 2009, 2013, 2016; Li et al., 2018). If
this function takes the form of a power law characterized by a
parameter known as scaling exponent, see section “Detrended
Fluctuation Analysis,” the fluctuations yield fractal scaling,
i.e., their magnitude scales with the temporal unit used for
their quantification. Moreover, the scaling exponent is an
indicator for temporal correlations present in the signal. Whereas
scaling exponents of 0.5 are obtained for uncorrelated noise,
scaling exponents exceeding 0.5 indicate positive correlations,
for which large (small) fluctuations are more likely to be
followed by large (small) fluctuations. Scaling exponents of
1.5 are indicative of Brownian motion (also known as red
noise) exhibiting a high degree of said regularity. Interestingly,
scaling exponents for healthy control subjects are close to 1,
in particular, ∼ 0.8–1.1 (Hu et al., 2004; Ohashi et al., 2004;

Paraschiv-Ionescu et al., 2008; Aybek et al., 2012). In addition,
they were found to be independent of individual average
activity levels and circadian phase and are unlikely to be a
consequence of random or scheduled events, but rather indicate
an underlying mechanism of motor control with stable fractal
characteristics over time scales ranging from minutes to hours
(Hu et al., 2004). Moreover, it was shown that elderly subjects
with dementia were associated with disrupted fractal scaling,
i.e., activity fluctuations could not be described by a single
power law over the entire time range. In contrast, two regions,
below ∼1.5 h and above ∼2 h, with distinct characteristic
scaling exponents were identified (Hu et al., 2009). The scaling
exponent for the longer time ranges was correlated with the
age and diagnosis of dementia (Hu et al., 2009), whereas a
decreasing scaling exponent at shorter time scales was associated
with the progression of cognitive decline (Hu et al., 2016).
Furthermore, the difference between the two scaling exponents,
i.e., a measure for the break-down of fractal scaling over the entire
time range, has been proposed as a (non-invasive) biomarker
of the degeneration of the suprachiasmatic nucleus in dementia
(Hu et al., 2013). In addition, this difference was shown to be
more pronounced in patients with more amyloid plaques (Hu
et al., 2013), which is positively correlated with the severity of
Alzheimer’s disease (AD).

The analysis of cumulative distributions of durations (CDDs),
another variant of fractal analysis, aims at characterizing how
periods of high and low locomotor activity are distributed
over time (Nakamura et al., 2007; Paraschiv-Ionescu et al.,
2008). Interestingly, also the analysis of CDDs was reported
to yield fractal scaling of the complementary, cumulative
distributions of low-activity period durations. Its characteristic
scaling exponent was shown to be close to 1 for healthy
control subjects (Nakamura et al., 2007, 2008, 2013a,b, 2016;
Sano et al., 2012). Moreover, the power law form of the
distributions appeared to be preserved also in cases of various
psychopathological syndromes, however, each of them being
associated with characteristic scaling exponents significantly
different from 1 (Nakamura et al., 2007, 2013a, 2016; Sano
et al., 2012). To our best knowledge, analysis of CDDs has
so far not been applied to actigraphic data of subjects with
dementia. As dementia affects locomotor activity (Cummings,
1997; American Psychiatric Association, 2013), one could
hypothesize that this might be reflected also in characteristics of
corresponding CDDs. Moreover, one could further hypothesize
that in the case of neurodegeneration, also an analysis of
CDDs should result in distributions of low-activity period
durations that deviate from power law form, indicating thus
a break-down of fractal scaling, as it has been found in
the case of DFA.

For these reasons, we applied both DFA and an analysis
of CDDs to actigraphy data of geriatric in-patients diagnosed
with dementia. We subsequently computed several measures in
order to quantify the extent of deviation from fractal scaling.
We also explored associations between those measures and
age, circadian activity parameters and scores obtained from the
Mini-Mental-State-Examination (MMSE; Folstein et al., 1975;
Kessler et al., 1990). Finally, we investigated how sensitive the
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several outcomes are to the time resolution of the analyzed
activity signals in order to explore their reliability with respect
to this parameter.

Due to largely lacking data which could clinically and psycho-
pathologically characterize the sample and the high extent
of heterogeneity in terms of comorbidities and interventions
including especially medication which are typical complications
in studies involving AD, we would like to emphasize already
at this stage that we explicitly do not regard this investigation
in any way to provide a stringent test of the hypothesis
that AD as such represents a specific cause for a general
loss of fractal regulation of human motor activity. Evidence
is accumulating corroborating such an expectation, though
(Hu et al., 2009, 2013, 2016; Li et al., 2018). However,
here, we rather aim to explore some of the capabilities of
the considered non-linear methodology when it is applied
in a setting typically faced in clinical reality in the case
of AD. In particular, we ask which conceptually expectable
implications may robustly remain in spite of the high degree
of heterogeneity in the data. Moreover, we particularly focus
on technical and methodological issues which are nevertheless
required to be considered in future research activities aiming
at more rigorous tests of the above mentioned hypothesis and
its implications.

MATERIALS AND METHODS

Subjects and Wrist Actigraphy
Patients were recruited at the Department of Psychiatry and
Psychotherapy A of the State Hospital Hall in Tirol, Austria. All
patients were examined according to a standardized protocol.
This examination included a clinical examination, a review
of medical records, laboratory testing, cognitive testing and
neuroimaging. Patients were included in the study when they
met the inclusion criteria. The main inclusion criterion was the
presence of Alzheimer’s dementia [F00 according to the ICD-10
classification of mental and behavioral disorders (World Health
Organization [WHO], 1992)]. Patients for who (i) diagnoses of
other mental or behavioral disorders or other types of dementia
(except for delirium superimposed on dementia; F05.1 according
to the ICD-10) were listed in their records (provided by the
hospital personnel) and/or patients who (ii) removed their
actigraphs autonomously before the end of their hospital stays
were excluded. The resulting sample comprised actigraphic data
of 36 patients (19 women and 17 men; 61–94 years old; mean
[SD] age: 81.8 [7.8] years). Additional diseases of those patients
are listed in Table 1 and more detailed information is provided
in Section 1 of the Supplementary Material accompanying
this work. Three participants showed day-night reversal. 16
participants were autonomously mobile, 17 needed a walking
aid or wheel chair and thus had limited mobility and for three
participants no information on their mobility was recorded. The
participants’ cognitive function was assessed with the MMSE
(Folstein et al., 1975; Kessler et al., 1990); mean score (SD): 13 (7).
The study was approved by the ethical committee of the Medical
University of Innsbruck.

TABLE 1 | Characteristics of the sample (mean with SD or number of subjects
with percentage in parenthesis).

Age 81.8(7.8)

Gender, n females 19(53%)

MMSE scorea 13(7)

Length of actigraphic recordings in days 19.7(6.2)

Average physical activity in CPMb 99(89)

Mobilityc, n autonomously mobile subjects 16(44%)

Other diagnosesd I10: Essential (primary) hypertension
(15; 42%); N39.0: Urinary tract
infection (14; 39%); E53.8:
Deficiency of other specified B
group vitamins (8; 22%); E87.6:
Hypokalemia (7; 19%); I25.1:
Atherosclerotic heart disease of
native coronary artery (6; 17%);
G45.9: Transient cerebral ischemic
attack (5; 14%); J44.9: Chronic
obstructive pulmonary disease
(4; 11%); E03.9: Hypothyroidism
(4; 11%); N18.9: Chronic kidney
disease (4; 11%); K59.0:
Constipation (4; 11%)

aAvailable for only 31 of 36 subjects; bQuantified as the mean of M10
parameters; cFor three subjects (8%) no information on their mobility recorded;
dOther than mental or behavioral disorders: only the ten most abundant are
listed, a more comprehensive list of diagnosed comorbidities is provided in the
Supplementary Material.

After written informed consent was obtained an accelerometer
of the type ActiGraph wGT3X-BT (Pensacola, FL, United States)
was attached to each participant’s wrist during the first two in-
patient treatment days in order to be henceforward continuously
worn. A fabric lock wristband deterred removal of the actigraph.
The accelerometers recorded accelerations experienced at the
location of the devices with respect to a three-dimensional
device-specific coordinate system using a sampling frequency
of ν = 30 Hz. Subsequently, we computed the magnitudes of
these raw, three-dimensional accelerations and corrected them
for the influence of gravitational acceleration g = 9.81 m/s2

by subtracting the latter from them. The magnitudes were
then converted to a binary signal yielding a value of 1 if
the acceleration magnitude exceeded 0.1 g and 0 otherwise.
These binary values were then summed over non-overlapping
time intervals each containing τ time points with τ = νδ and
δ denoting the length of the time intervals in seconds. In
order to investigate the dependence of our results on temporal
resolution we used δ = 5, 10, 15, 30, and 60 s yielding
counts (i.e., how often the acceleration magnitudes exceed
the threshold of 0.1 g) per every 5, 10, 15, 30, and 60 s,
respectively. For the remainder of this work, we refer to these
data for brevity as CP5s, CP10s, CP15s, CP30s, and CPM
which is short for counts per 5, 10, 15, 30 s and for counts
per minute (we stick to this different notation in the case
of 60 s = 1 min intervals for the frequent use of this short
notation CPM in the literature), respectively. On average (SD)
19.7 (6.2) days of actigraphic recordings were analyzed, ranging
from 11.6 to 39.6 days.
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FIGURE 1 | (A) Locomotor activity in CPM for the first seven consecutive days of a patient included in the present study; the overall mean activity is indicated by the
thick white line. (B) Magnification of the time span of 11:00–16:00 at day 5 to illustrate the process of dichotomization of the data in order to analyze the empirical
CDD of this patient. (C) Dichotomized data corresponding to the time span shown in (B); black areas represent durations during which the activity is above the
overall average (thick white line in B), gray areas represent durations during which the activity is below that threshold. (D) Empirical CDD of the same patient (gray
squares) and of another patient (gray circles) for comparison; distribution functions of best fitting power law (black solid lines) and best fitting lognormal distributions
(black dashed lines) are also shown. (E) Fluctuation amplitudes for the same patients as in (D) versus time scale in minutes; short (below 1.5 h) and long (beyond 2 h)
time ranges are indicated by vertical dotted lines and arrows; fitted power laws in those two time ranges are depicted using solid and dashed black lines, respectively.

Fractal Analyses
Analysis of (Complementary) Cumulative
Distributions of Durations
For the analysis of the cumulative distribution of low-activity
period durations (CDDs) the time series of accumulated activity
counts (i.e., the CP5s, CP10s, CP15s, CP30s, or CPM, see
section “Subjects and Wrist Actigraphy”) of each participant was
dichotomized into periods yielding activities lower and higher
than the overall mean activity, see also Figure 1. In particular,
the overall mean activity in terms of the CP5s, CP10s, CP15s,
CP30s, and CPM activity data of each participant was calculated
first (see also Figures 1A,B). Subsequently, the activity data was
decomposed into disjunct intervals in which the activity was
lower or higher than the overall mean activity (Figure 1C), i.e.,
it was decomposed into low- and high-activity periods. Then,
the durations of the low-activity periods were determined and
sorted from shortest to longest, i.e., d1 < d2 < . . . < dn with
di denoting the i-th shortest low-activity period duration and
d1 and dn denoting the shortest and longest of all low-activity
period durations determined for the respective participant. The
complementary cumulative distribution (CDD), P(X ≥ d), i.e.,
the probability to find a low-activity period of a duration
longer than or equal to d, was then calculated for each patient
according to:

P
(
X ≥ d

)
≡

∞∫
d

p (x) dx ≈
1
N

n∑
i=nd

Ni
(
di
)

Here, the probability density function p(x) of low-activity
periods with durations between x and x+ dx is approximated
with the empirical frequency of low-activity period durations

di, i.e., the ratio Ni(di)/N with N =
n∑

i=1
Ni(di), Ni(di) denoting

the number of low-activity periods with duration di, and nd
denoting the index of the shortest determined duration equal or
longer than d in the sorted set of low-activity period durations
described above.

Cumulative distributions of durations resembling a power
law, i.e., P(X ≥ d) ∝ d−γ with γ > 0 denoting the scaling
exponent, suggest fractal scaling and have been observed
for low-activity periods obtained repeatedly via the same
procedure of dichotomization in earlier investigations
(Nakamura et al., 2007, 2008, 2013a,b, 2016; Sano et al.,
2012). However, these studies did not use actigraphy
data from patients with dementia, whereas in the present
work, we particularly investigated CDDs of low-activity
durations for participants with dementia. In order to
quantify deviations of the resulting CDDs from power
law form, we fitted both a power law and the CDD of a
lognormal distribution to the CDDs via maximum-likelihood
(Clauset et al., 2009) building on the procedure described by
Mirman et al. (2012).

In particular, the probability density function for a power
law reads:

pPL (x) = cPLx−β, cPL = (β− 1)dβ−1
min
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with the fitting parameters β = γ+ 1 (with the scaling exponent
γ introduced above) and dmin. The probability density function
for a lognormal distribution reads:

pLN (x) = cLN
1
x

exp

[
−

(
ln(x)− µ

)2

2σ2

]
,

cLN =

√
2

π σ2

[
erfc

(
ln
(
dmin

)
− µ

√
2σ

)]−1

,

with fitting parameters µ, σ, and dmin. The best fits to the
empirically determined durations of low-activity periods, i.e., the{

di
}

i=1,...,n introduced above, are then obtained via maximum-
likelihood, i.e., by finding fitting parameters such that the
likelihoods given specific values for the fitting parameters:

p(
{

di
}

i=1,...,n |β,dmin) =

n∏
i=1

pPL(di)

and

p(
{

di
}

i=1,...,n |µ, σ, dmin) =

n∏
i=1

pLN(di)

become maximal for the power law and the lognormal
distribution, respectively.

Note that both probability density functions include a

lower bound of durations, dmin, such that
∞

∫

dmin

p (x) dx = 1.

The lower bounds for the power law and the lognormal
distribution that provide the best fits to a given CDD are
usually not equal, see also Figure 1. Since deviations from
power law form were quantified by assessing the log-likelihood-
ratio (LLR) of the obtained likelihoods for the two distributions
(Vuong, 1989), this was done pair-wise and subsequently: first,
dmin = dPL

min was computed for a power law and then also
a lognormal distribution was fitted using the same dmin and
finally the two obtained fits were compared via the LLR;
second, the procedure was repeated analogously for dmin =

dLN
min computed first via fitting a lognormal distribution to

the data and then a power law using that dmin. As an
alternative measure of the deviation from power law form we
computed the ratios of goodness-of-fit (GOF) obtained via the
Kolmogorov–Smirnov-distance metric (Clauset et al., 2009) for
the best fitting power law and lognormal distributions each
corresponding to its own optimized minimum durations, i.e.,
dPL

min or dLN
min, respectively.

All computations were performed using the software R (R
Development Core Team, 2017). For fitting power law and
lognormal distributions to the CDDs and computing their LLRs
the poweRlaw package was used (Gillespie, 2015).

Detrended Fluctuation Analysis
Detrended fluctuation analysis has been described in detail
elsewhere (Peng et al., 1995, 2002). In short, the actigraphic
signal is first centered (with respect to its mean), integrated
and decomposed into disjoint time windows of length m.

Subsequently for each of those windows, the root-mean-square
residuals from a trend fitted to the integrated signal in each
window are computed. Taking the average of the residuals over
all windows of a given size and repeating the procedure for
various window sizes then yields the fluctuation F(m) as a
function of the time scale m. Again, a power law functional
form, i.e., F (m) ∝ mα, indicates fractal scaling with the scaling
exponent α > 0. We separately calculated two scaling exponents
in distinct time ranges, in particular α1 for time scales below
1.5 h and α2 for time scales beyond 2 h as done in earlier work
(Hu et al., 2009), see also Figure 1. The difference between
those two exponents, α12 = α1 − α2, and its absolute value,
|α12|, were used to quantify the deviation of the fluctuation
function from a power law over the whole time range for
which fractal scaling was observed for various physiological
outputs under healthy conditions (Hu et al., 2004; Ohashi
et al., 2004; Paraschiv-Ionescu et al., 2008; Aybek et al., 2012).
All computations were performed using the software R (R
Development Core Team, 2017) and employing the dfa function
(Penzel et al., 2003) provided in the R package non-linear T
series (Garcia, 2015). In particular, we used 66 window sizes
ranging from 3 to 720 min, whereas the entire time range has
been split into two distinct ranges from 3 to 90 and from 120
to 720 min for calculating the two scaling exponents α1 and α2
as outlined above.

Assessment of Circadian Parameters
Dementia and especially AD is associated with circadian activity
rhythm disturbances (Ancoli-Israel et al., 2002; Hatfield et al.,
2004) which can be quantified with a non-parametric analysis
of actigraphy data (Van Someren et al., 1999). Here, we assessed
the following parameters: (a) inter-daily stability (IS) which
provides a measure for the stability of locomotor activity across
days, (b) intra-daily variability (IV) which provides a measure
for the fragmentation of the rest-activity rhythm, (c) rhythm
amplitude (RA) quantifying the average span of activities between
the ten most active and five most inactive hours in a day, (d)
averages of activity of the ten consecutive hours with maximal
activity (M10). For computation of these parameters we used
the routines implemented in the R software package nparACT
(Van Someren et al., 1999; Blume et al., 2016).

Statistical Analyses
For all computed means of outcome parameters which indicate
a deviation from fractal scaling (i.e., |α12|, LLR and GOF
ratios) bias-corrected and accelerated bootstrap 95%-confidence
intervals (Efron, 2012) were computed and interpreted regarding
statistical significance of the results. The same was done
for the Pearson correlation coefficients computed in order
to explore associations between DFA parameters, the MMSE
scores, circadian activity parameters and the age of the study
participants. For comparison of power law and lognormal fits in
the case of individual CDDs, p-values were computed according
to Vuong’s method (Vuong, 1989). In this case, we have taken
p < 0.1 as a criterion that the sign of the LLR is a reliable indicator
for which distribution provides the better fit to the respective
CDD (Clauset et al., 2009).
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FIGURE 2 | Sample means and bootstrapped 95%-CIs for the absolute values of the difference between scaling exponents for short (below 1.5 h) and long (beyond
2 h) time ranges as obtained via DFA, |α12| (left panel), for the log-likelihood-ratios of the computed likelihood that a CDD results from a lognormal distribution
relative to a power law distribution, LLR (middle panel), and for goodness-of-fit (GOF) ratios computed using the Kolmogorov–Smirnov distance metric for
evaluating the GOFs for lognormal and power law distributions (right panel) for all considered time resolutions. Threshold values indicating the deviation from fractal
scaling are shown for all three cases in form of dashed, horizontal lines (at 0 for |α12| and LLR and at 1 for GOF ratios). For LLR, a positive sign indicates that a
lognormal distribution fits the data better than a power law distribution. For GOF ratios, a value larger than 1 indicates that a lognormal distribution fits the data better
than a power law distribution.

RESULTS

Assessment of Deviations From Fractal
Characteristics
The assessed measures for deviations from fractal scaling (i.e.,
|α12| for fluctuation amplitudes determined via DFA and LLR as
well as GOF ratios for analysis of CDDs) result in a significant
deviation of sample means from the respective values associated
with fractal scaling irrespective of the used time resolution of
the activity data, see Figure 2. In particular, sample means of
|α12| range from 0.141 with 95%-CI [0.109, 0.177] for the lowest
time resolution of CPM to 0.136 with 95%-CI [0.106, 0.169]
for the highest time resolution of CP5s. A complete list for
all time resolutions is supplied in the Supplementary Material.
The bootstrapped 95%-CIs of |α12|, shown also in Figure 2, are
located clearly off an absolute difference of 0.0 (dotted line in
the left panel of Figure 2) which would indicate both scaling
exponents for short (below 1.5 h) and long (beyond 2 h) time
ranges to be the same on average, and hence the presence of
fractal scaling over the whole time range. Thus, DFA indicates
a significant break-down of fractal scaling for the given sample.
We obtained an analogous result in our analysis of CDDs. In
particular, sample means of LLR are significantly larger than 0.0,
again for all considered time resolutions, see Figure 2 (middle
panel), i.e., lognormal distributions provide better fits to the
CDDs than power law distributions (which would indicate fractal
scaling). For the GOF ratios, a ratio of 1 indicates equal goodness
of fit for both the lognormal and the power law distributions.
Inspection of corresponding 95%-CIs of sample means yields
that GOF ratios are significantly larger than 1 (right panel in
Figure 2) indicating again a significant deviation from fractal
scaling. Numeric values for sample means of LLR and GOF
ratios and their 95%-CIs for all considered time resolutions are
provided in Supplementary Table 5.

These results appear robust also against eventual effects
of gender, mobility of the patients, and events such as falls
and/or physical restraining. In particular, we decomposed the

entire sample into samples for male and female patients, for
autonomously mobile and (at least partially) immobile patients,
for participants who never fell and fell at least once over
their stays in hospital, and for participants who were never
subject to physical restraining and those who were subject
to physical restraining at least once during their stays in
hospital. In all cases the respective means of all three considered
quantities (|α12|, LLR, GOF) indicate significant deviations
from fractal scaling. As mentioned in section “Subjects and
Wrist Actigraphy,” three participants showed day-night-reversal.
Excluding these participants from our analyses also resulted only
in marginally different numbers. Our results for the subsamples
concerning gender, mobility, falls, physical restraining and for the
exclusion of participants with day-night-reversal are provided in
Supplementary Tables 6–14.

However, we note substantially larger fluctuations with respect
to time resolution for LLR and GOF ratios than for |α12|. This
is a consequence of the considerably larger fluctuations with
respect to time resolution of those quantities at the individual
per-patient level. In particular, the scaling exponents as well
as their (signed and unsigned) differences resulting from DFA
appear to be converged within 0.02, 0.048, 0.041, and 0.041 for
α1, α2, α12, and |α12| for time resolutions of at least CP30s. Here,
we are taking the maximal span of ranges of those quantities
for CP30s, CP15s, CP10s, and CP5s with respect to all patients
as the most conservative measure of their convergence with
respect to time resolution. Skipping the lowest time resolution
(CPM) results from noting that for this resolution values can
still be rather different from values at the other resolutions
whereas for the latter they appear to be converged within the
limits given above. We note that these measures of convergence
may serve also as measures of accuracy of the DFA results
with respect to time resolution. This could be extended also
to the individual level in which case accuracies with respect
to time resolution are mostly well below the above given most
conservative estimates. The low values and hence the low
fluctuations of individual DFA results underpin the robustness
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of the DFA results concerning time resolution. In contrast,
analysis of CDDs results in highly fluctuating individual values
for LLR and GOF ratios. Both quantities do not appear to
yield any convergent behavior with increasing time resolution,
i.e., individual values may change as much by decreasing time
resolution from CPM to CP30s as for decreasing it from CP30s
to CP15s or CP15s to CP10s, etc. Moreover, the mean spans of
ranges for all considered time resolutions yield 2.22 (SD = 1.26;
min = 0.59; max = 6.26) and 0.86 (SD = 0.49; min = 0.22;
max = 2.38) for LLR and GOF ratios, respectively, hence yielding
values of the same order of magnitude as the sample means
themselves. Nevertheless, deviations from fractal scaling in case
of CDDs are also clearly observable on an individual level of
assessment by analyzing absolute frequencies of significantly
better fits obtained for lognormal distributions than obtained for
power law distributions to the individual data as described in
section “Statistical Analyses.” This results in 22 (61%), 27 (75%),
29 (81%), 26 (72%), and 32 (89%) data sets out of 36 in total
which are significantly better described by a lognormal than a
power law distribution for the time resolutions of CPM, CP30s,
CP15s, CP10s, and CP5s, respectively. For the remaining data sets
none of the two distributions delivers a statistically significantly
better fit to the data. Moreover, a power law distribution provides
a significantly better fit to the data than a lognormal distribution
in none of all cases for all considered time resolutions. Assuming
that the functional form of the “true” CDD corresponding to
the specific participant becomes captured the better the higher
the time resolution, this represents rather strong evidence that a
lognormal distribution provides overall a substantially better fit
to the data than does a power law distribution.

Altogether, both kinds of analyses result in substantial
deviations from fractal scaling both at an individual and at
a sample level of assessment. Whereas results obtained with
DFA are highly robust with respect to the used time resolution,
individual values of the quantities obtained via analysis of
CDDs are highly sensitive to time resolution, although the
primary outcome of indicating a break-down of fractal scaling
is not affected.

Finally, we report the mean values (with standard errors)
of the scaling exponents obtained in the case of DFA for the
two distinguished time regimes. For α1 we obtain 0.99 ± 0.01,
0.95 ± 0.01, and three times 0.94 ± 0.01 for the time resolutions
of CPM, CP30s, CP15s, CP10s, and CP5s, respectively. For
α2 we obtain 0.90 ± 0.02 for all considered time resolutions.
Since the information contained in the magnitudes of the
scaling exponents obtained in the case of analysis of CDDs
could be highly misleading, see section “Discussion,” we refrain
from reporting and interpreting them here. Further descriptive
statistics also concerning the other quantities assessed in this
work can be found in Supplementary Tables 2, 4.

Assessment of Associations Between
Determined Parameters
We report first the pair-wise correlation coefficients obtained
for |α12|, LLR and GOF ratios for the five considered time
resolutions, i.e., CPM, CP30s, CP15s, CP10s, and CP5s. The

results are summarized in Tables 2–4 together with bootstrapped
95%-CIs for the computed correlation coefficients (below
diagonal). For |α12| we robustly find high correlations with 95%
confidence above at least 0.83 (lower bound of the 95%-CIs)
which increase further to above 0.98 if the lowest time resolution
of CPM is disregarded, see Table 2. This is in line with the
already noted convergence of the obtained DFA parameters for
time resolutions of at least CP30s, see section “Assessment of
Deviations From Fractal Characteristics.” Moreover, this finding
holds also for the individual scaling exponents α1 and α2 as
well as their signed difference α12 for which correlations for
time resolutions of at least CP30s are robustly above 0.99, see
Supplementary Tables 15–17. Due to this result, we restrict our
report of further associations between the quantities obtained via
DFA and other parameters to a time resolution of CP15s for the
remainder of this work without expecting any loss of generality.

In section “Assessment of Deviations From Fractal
Characteristics,” we found a substantial dependence on the
used time resolution concerning the LLR and GOF ratios

TABLE 2 | Pair-wise correlation coefficients (above diagonal) and bootstrapped
95%-CIs (below diagonal) for |α12| obtained via DFA of all participants’ activity
data using the five considered time resolutions CPM, CP30s, CP15s,
CP10s, and CP5s.

CPM CP30s CP15s CP10s CP5s

CPM 1 0.928 0.902 0.897 0.897

CP30s [0.876, 0.961] 1 0.991 0.989 0.991

CP15s [0.839, 0.943] [0.983, 0.996] 1 0.995 0.996

CP10s [0.833, 0.940] [0.980, 0.995] [0.988, 0.999] 1 0.998

CP5s [0.834, 0.939] [0.984, 0.996] [0.990, 0.999] [0.997, 0.999] 1

TABLE 3 | Pair-wise correlation coefficients (above diagonal) and bootstrapped
95%-CIs (below diagonal) for LLR obtained via analysis of the CDDs of all
participants using the five considered time resolutions CPM, CP30s, CP15s,
CP10s, and CP5s.

CPM CP30s CP15s CP10s CP5s

CPM 1 0.539 0.493 0.370 0.172

CP30s [0.168, 0.732] 1 0.612 0.341 0.442

CP15s [0.172, 0.719] [0.366, 0.796] 1 0.709 0.639

CP10s [0.044, 0.637] [−0.032, 0.737] [0.509, 0.866] 1 0.493

CP5s [−0.155, 0.451] [0.226, 0.660] [0.414, 0.841] [0.184, 0.795] 1

TABLE 4 | Pair-wise correlation coefficients (above diagonal) and bootstrapped
95%-CIs (below diagonal) for the GOF ratios obtained via analysis of the CDDs of
all participants using the five considered time resolutions CPM, CP30s, CP15s,
CP10s, and CP5s.

CPM CP30s CP15s CP10s CP5s

CPM 1 0.385 0.132 −0.053 −0.175

CP30s [0.091; 0.655] 1 0.668 0.484 0.300

CP15s [−0.238, 0.543] [0.469, 0.819] 1 0.760 0.589

CP10s [−0.357, 0.328] [0.173, 0.806] [0.598, 0.886] 1 0.689

CP5s [−0.421, 0.113] [−0.048, 0.631] [0.299, 0.807] [0.484, 0.830] 1
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obtained via analysis of CDDs on the used time resolution. This
is also reflected in the pair-wise correlations, see Tables 3, 4.
The highly fluctuating correlation coefficients are further
evidence that interpretation of the assessed quantities must
be exercised with caution. Their magnitude does probably
not yield a reliable indicator of the amount of the individual
deviation from fractal scaling. The sign of LLR, in especially
being significantly larger than 0.0, or a GOF ratio significantly
larger than one, can still serve as reliable indicators of the
presence of a significant deviation from fractal scaling, though.
The high degree of fluctuation in the magnitudes of these
quantities for all considered time resolutions is reflected also
in fluctuating correlations between corresponding LLR and
the GOF ratios, see Table 5. The correlation coefficients can
be considered rather low or at most moderate given that these
measures represent different approaches to quantify the same
property, i.e., the magnitude of the deviation of the CDD from
a power law. Furthermore, both measures do not yield any
significant correlation with the unsigned difference between
the scaling exponents obtained via DFA, i.e., |α12|, see also
Table 5. Due to these findings, we refrain from interpreting any
correlations between those two quantities and other parameters,
but we include the resulting pair-wise correlation coefficients
in Supplementary Tables 18, 19 in order to tentatively show
that the sensitivity of LLR and the GOF ratio on time resolution
is associated also with corresponding fluctuations in those
coefficients. Some methodological implications of these findings
are discussed in more detail in section “Discussion.”

In Tables 6, 7, we supply pair-wise correlation coefficients
together with their bootstrapped 95%-CIs for correlations
between the DFA parameters α1, α2, α12, |α12| (obtained using
a time resolution of CP15s) and the variables IS, IV, RA, M10,
the age and the MMSE scores of the study participants. Note that
MMSE scores were available only for 31 out of 36 participants.
Besides the mathematically founded associations between α1,
α2, and α12, i.e., α12 increases for increasing α1 as well as for
decreasing α2 (recognizing, however, the dominant contribution
of α2), we note that both α1 and α2 increase with M10, i.e.,
an increasing overall level of activity, r(α1, M10) = 0.490 with
95%-CI [0.201, 0.743], r(α2, M10) = 0.526 with 95%-CI [0.222,
0.707], i.e., the more active participants are associated with more
regularity in their activity fluctuations at both short (below 1.5 h)
and long (beyond 2 h) time scales. Based on their CIs, we
note further that especially the scaling exponents α1 at short
timescales and α2 at long time scales as well as all other pairs

TABLE 6 | Pair-wise correlation coefficients (above diagonal) and bootstrapped
95%-CIs (below diagonal) for the DFA parameters α1, α2, α12, |α12| (obtained
using the time resolution CP15s).

α1 α2 α12 |α12|

α1 1 0.008 0.474 0.271

α2 [−0.306, 0.272] 1 −0.876 −0.172

α12 [0.173, 0.740] [−0.930, −0.797] 1 0.282

|α12| [−0.039, 0.563] [−0.647, 0.257] [−0.128, 0.743] 1

of quantities do not yield any significant (linear) associations
between them. Moreover, we find a significant increase of the
MMSE score with increasing α1, r = 0.415 with 95%-CI [0.060,
0.714], as well as with decreasing α2, r = −0.328 with 95%-CI
[−0.549, −0.073]. Consequently, there is a significant even more
pronounced association also for the signed difference α12 and the
MMSE score, r = 0.494 with 95%-CI [0.227, 0.695], which is lost
by omitting the sign (see the results for |α12| in Table 7).

We further find slight associations between the interdaily
stability of activity, IS, and the scaling exponent at short time
scales (below 1.5 h), α1, r = 0.371 with 95%-CI [0.018, 0.586] and
also between IS and the unsigned difference of scaling exponents,
|α12|, r = 0.301 with 95%-CI [0.010, 0.562]. The parameter IS is
also strongly associated with the rhythm amplitude, RA, r = 0.745
with 95%-CI [0.594, 0.874] which quantifies the difference in
activity between the ten most active and five least active hours
and it is thus methodologically also associated with the parameter
M10. Indeed, all three parameters, IS, RA, and M10 are definitely
intertwined as can be seen also from inspection of Table 8 which,
for the sake of completeness, provides the pair-wise correlation
coefficients together with their bootstrapped 95%-CIs obtained
between the circadian parameters IS, IV, RA, M10, the age, and
the MMSE scores of all study participants. All three parameters
also yield at least a tendency to decrease with increasing age,
see Table 8. Furthermore, we find a strong association between
the scaling exponent at long time scales (beyond 2 h), α2,
and the intradaily variability, IV, r = −0.876 with 95%-CI
[−0.926, −0.818], i.e., IV decreases for increasing α2. This can
be understood by reflecting the methodological foundations of
both quantities. The scaling exponent α2 quantifies the regularity
of activity fluctuations at time scales beyond 2 h. On the other
hand, IV quantifies how strongly the actigraphic signal varies on
a daily basis by accumulating activities into hourly values (Blume
et al., 2016). A more regular actigraphic signal is characterized

TABLE 5 | Correlation coefficients and bootstrapped 95%-CIs for associations between LLR and GOF, LLR and |α12|, and GOF and |α12| for all considered
time resolutions.

CPM CP30s CP15s CP10s CP5s

r(LLR,GOF) 0.603 0.309 0.624 0.484 0.472

[0349, 0.760] [−0.153, 0.583] [0.404, 0.773] [0.190, 0.690] [0.164, 0.691]

r(LLR, |α12|) 0.151 0.074 0.187 0.158 0.179

[−0.109, 0.433] [−0.260, 0.371] [−0.160, 0.495] [−0.200, 0.444] [−0.137, 0.431]

r(GOF, |α12|) 0.011 0.170 0.158 0.141 0.063

[−0.314, 0.303] [−0.263, 0.462] [−0.187, 0.469] [−0.253, 0.450] [−0.277, 0.371]
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TABLE 7 | Pair-wise correlation coefficients (above diagonal) and bootstrapped 95%-CIs (below diagonal) between the DFA parameters α1, α2, α12, |α12| obtained using
the time resolution CP15s and the variables IS, IV, RA, M10, the age and the MMSE scores of all study participants.

IS IV RA M10 Age MMSEa

α1 0.317 0.110 0.172 0.490 0.017 0.415

[0.018, 0.586] [−0.240, 0.438] [−0.121, 0.442] [0.205, 0.743] [−0.323, 0.360] [0.060, 0.714]

α2 0.266 −0.876 0.092 0.526 −0.140 −0.328

[−0.053, 0.538] [−0.926, −0.818] [−0.174, 0.339] [0.222, 0.707] [−0.372, 0.058] [−0.549, −0.073]

α12 −0.081 0.825 0.003 −0.226 0.132 0.494

[−0.460, 0.311] [0.708, 0.900] [−0.270, 0.286] [−0.542, 0.215] [−0.143, 0.410] [0.227, 0.695]

|α12| 0.301 0.398 0.250 0.165 −0.144 0.217

[0.010, 0.562] [0.020, 0.729] [−0.014, 0.476] [−0.163, 0.459] [−0.400, 0.119] [−0.152, 0.566]

aMMSE scores were available only for 31 out of 36 participants.

TABLE 8 | Pair-wise correlation coefficients (above diagonal) and bootstrapped 95%-CIs (below diagonal) for the circadian parameters IS, IV, RA, M10, the age (in years),
and the MMSE scores of the participants.

IS IV RA M10 Age MMSEa

IS 1 −0.025 0.745 0.654 −0.326 0.103

IV [−0.325, 0.311] 1 0.019 −0.350 0.127 0.411

RA [0.546, 0.893] [−0.265, 0.344] 1 0.357 −0.412 0.000

M10 [0.464, 0.800] [−0.610, 0.040] [0.065, 0.603] 1 −0.242 0.142

Age [−0.631, 0.022] [−0.084, 0.308] [−0.642, −0.119] [−0.548, 0.049] 1 −0.058

MMSE [−0.276, 0.494] [0.108, 0.663] [−0.480, 0.392] [−0.214, 0.582] [−0.473, 0.275] 1

aMMSE scores were available only for 31 out of 36 participants.

by a higher probability of low/high activities being followed
by low/high activities compared to a more irregular signal for
which such associations are less pronounced. Assessing this
characteristic on time scales of the order of hours, IV will increase
the more irregular an actigraphic signal is, and by construction,
the opposite is true for α2. Hence, the strong association
between those two quantities is merely based on common
method variance and thus, unsurprising. The further significant
associations between the signed and unsigned differences, α12
and |α12|, and IV, see Table 7, are then a direct consequence of
this methodologically founded association between α2 and IV.
Consequently, also IV and the MMSE score are associated with
each other, r = 0.411 with 95%-CI [0.108, 0.663], see Table 8.

The reported associations between the assessed variables
are also not affected substantially by exclusion of the three
participants with day-night-reversal. The corresponding data are
provided in Supplementary Tables 20–22.

DISCUSSION

We found evidence that both locomotor activity signal
characteristics considered in this work [i.e., activity fluctuations
and complementary cumulative distributions of low-activity
durations (CDDs)] deviate from fractal scaling over the entire
time range from about 1 min to about 10 h for our sample of 36
geriatric in-patients with AD. In the case of activity fluctuations
assessed via DFA, our results indicate rather the existence of two
distinct scaling regimes. Our measure of deviance from fractal
scaling over the entire time range in that case, i.e., the absolute

value of the difference of scaling exponents at short (below 1.5 h)
and long (beyond 2 h) time scales |α12|, turned out to be highly
robust with respect to the chosen time resolution for obtaining
the analyzed activity signal. In particular, for the assessed time
resolutions below 1 min, i.e., accumulation of activity counts
per 30, 15, 10, and 5 s, said measures, represented by numbers
between 0.5 and 1.5, have been converged within at least 0.02 for
our sample. This can serve as an estimate of the accuracy with
which these measures are determined by DFA with respect to time
resolution of the analyzed signal. Similar accuracies resulted for
the individual scaling exponents as well as the signed differences
of them obtained via DFA. We can hence add this finding to the
already established robustness of the quantities obtained with this
method against external schedules, individual average activity
levels and circadian phase (Hu et al., 2004).

While we could thus advise to use time resolutions of or below
30 s in future work utilizing DFA for the analysis of human
locomotor activity, we would rather emphasize on adding an
assessment of the variation of resulting scaling exponents with
respect to time resolution to the analysis protocol in order to
infer about the accuracy of the obtained results with respect to
this technical choice. Nowadays, many actigraphs allow access
to the raw, recorded accelerations (John and Freedson, 2012)
and hence, straightforward computation of appropriate activity
signals for further analysis using various time resolutions for
the latter. Since the resulting accuracy with respect to time
resolution can, in principle, depend on the specific sample or
other study parameters, further independent assessments of this
accuracy would be informative concerning the generalizability of
our finding while requiring manageable additional effort.
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In contrast, the measures assessing the deviation from fractal
scaling upon analyses of CDDs depended strongly on the time
resolution of the underlying signal. While the presence of a
substantial deviation from power law like CDDs per se, both at
sample and individual level of assessment, was a common feature
for all considered time resolutions, the individual magnitudes of
the assessed measures for it turned out to be highly varying for
different time resolutions. We hence refrained from interpreting
the latter, noting merely that there is clear evidence for a deviation
from fractal scaling also in the case of analysis of CDDs.

For the analyses of CDDs, the assessment of fractal
characteristics was based on the comparison of how well a power
law or a lognormal distribution could describe the empirical data
of an individual participant. One reason for the sensitivity of
the resulting measures, represented by two kinds of ratios of
relative goodness-of-fit parameters, could then be that neither
the power law nor the lognormal distribution provide optimal
fits to the empirical data. This is indicated already at the level of
bare inspection of graphs of the various empirical CDDs which
we provide also in the Supplementary Material. Indeed, we
found that those graphs can be categorized into three groups: (i)
four instances in which both the power law and the lognormal
distribution appear to provide good fits to the data, (ii) three
instances in which both distributions appear to provide only poor
fits to the data, and (iii) 29 instances in which the lognormal
distribution provides considerably better fits to the data than
power law distributions. However, in most of these cases (20 of
29 instances) lognormal distributions appear to provide better
fits than power laws to the CDDs beyond 10–20 min, whereas
the best fitting power laws typically yield considerably shorter
minimum durations (i.e., dPL

min below 10–20 min). Generally,
it could be the case that the specific functional form of the
analyzed CDDs eventually corresponds rather to a composition
of, e.g., a power law like function at shorter time scales and the
cumulative distribution function of a lognormal distribution at
longer time scales. The actual functional form of the CDDs may
then contain more (also psychologically) relevant information
than can be resolved by our analysis. Comparing the CDDs of
patients diagnosed with psychotic or bipolar disorder yielded
the result that different psychopathological states may be related
to different, specific functional forms of CDDs which were, in
the considered cases, not represented by simple power laws
(Chapman et al., 2017). We hence conclude that such an analysis
may well provide an interesting route for future research also in
the present context of dementia.

The finding that a power law does not provide a good fit for
the assessed data for most of the participants has consequences
also for quantities derived from the empirical CDDs as well as
interpretations based on them. Nakamura et al. (2007, 2016)
proposed a model for the temporal coordination of locomotor
activity using the stochastic priority list model by Barabási
(2005). The authors assume that spontaneous motoric activity is
triggered by responses to internal or external demands or stimuli
such as appetite, emotion, etc. (Nakamura et al., 2016). If stimuli
or demands are probabilistically chosen in direct proportion
to their biological importance, then the CDDs, resulting from
the model, would follow a power law with a scaling exponent

γ = 1 (Nakamura et al., 2016). Preferential selection of stimuli or
demands with higher priorities (relative to the selection of lower-
priority stimuli or demands) would result in scaling exponents
lower than one. This would give rise to more frequent longer low-
activity periods and a more intermittent sequence of onsets of
activity bursts as observed in major depression (Nakamura et al.,
2007), bipolar disorder during the depression phase (Nakamura
et al., 2013a) and schizophrenia (Sano et al., 2012). The opposite,
i.e., preferential selection of lower-priority stimuli or demands
would instead result in scaling exponents larger than 1 and were
observed in bipolar disorder during a manic episode (Nakamura
et al., 2013a). The model could thus provide a promising
link between the functional form of the empirically obtainable
CDD and an eventual underlying psychopathological state. The
scaling exponents were hence discussed as eventual non-invasive
biomarkers for the assessed pathological states (Kim et al., 2016;
Nakamura et al., 2016).

However, in the present context it is important to note that
the proposed model suggests the empirical CDDs to follow a
power law distribution (at least over time scales ranging from a
few minutes to several hours) in all of the discussed cases. Hence,
empirical CDDs deviating substantially from scale invariance are
simply not in the scope of the model and therefore should not
be interpreted on its basis. This is especially important since
technically, a power law distribution can be fitted to CDDs
in any case regardless if they adhere in principle to a power
law distribution or not. Then, however, the resulting scaling
exponents are merely a consequence of the actual functional form
of the CDDs and parameters and adjustments with respect to
the fitting procedure, but certainly not of relations derived via a
model applicable only if the empirical CDDs yield the functional
form of a power law. This is reflected in the present study also by
noting that the dominant portion of the variance in the computed
scaling exponents can be explained by the choice of the parameter
dmin determined during the fitting procedure (see section
“Materials and Methods”) and the maximal duration of low-
activity periods in the respective data, see also Supplementary
Tables 2–4. Using these two variables as predictors results indeed
in highly significant regression equations explaining 58–75%
of the variance of the scaling exponents γ for all considered
time resolutions, see Supplementary Table 3. Obviously, this
is at cross with the notion of (time) scale invariance, but is
an expectable result if the assessed CDDs are simply not well
described by power laws in the considered time range.

This finding calls also for additional conceptual groundwork.
The model proposed by Nakamura et al. (2007, 2016) provides
a link between the temporal coordination of general motoric
activity and cognitive decision-making and prioritization
processes in response to internal and external influences.
Nevertheless, the model cannot account for CDDs substantially
deviating from the functional form of a power law. In line
with our findings, it has been noted earlier (Chapman et al.,
2017) that the stochastic models which may best describe
motoric behavior are more complex than previously thought.
Chapman et al. (2017) assessed CDDs from patients with
psychotic symptoms or bipolar disorder and found that they
were well described by truncated power laws as well as sums of
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exponentials and truncated power laws in contrast to power laws
as such. Furthermore, patients with chronic pain yield CDDs
which can be described better by the distribution function of a
lognormal distribution than of a power law in 60% of the cases
(Paraschiv-Ionescu et al., 2013). Working hence on conceptual
extensions of the model proposed by Nakamura et al. (2007,
2016) may eventually lead to an increased understanding of the
interaction of different functional, neural systems, which are
probably involved in generating the complex dynamics reflected
in the presence of long-tailed statistics in locomotor activity data
(Roberts et al., 2015). Such an approach would require to focus
especially on how memory and its decline may affect or can be
incorporated in the mathematical formulation of the model.
In turn, a better fundamental understanding could then foster
the utilization of adequate analyses of locomotor activity data
for providing information about diagnostically relevant neural
processes via completely non-invasive actigraphy. However,
toward this ambitious, long-term goal a variety of potential
complications and difficulties need to be considered and
scrutinized, which shall be outlined below with regard also to the
various limitations of the present study.

While our results provide evidence of substantial deviations
from scale invariance in the assessed locomotor activity data,
these deviations cannot be attributed simply to the prevalence
of dementia in our sample. Nevertheless, earlier findings indicate
that at least in the case of the DFA results, a significant portion
of the noted effect is probably due to the cognitive decline
associated with dementia. Hu et al. (2009) found that scaling
exponents obtained via DFA at time scales in a range of 1.5-
8 h decline with age and are, independently of age, even further
reduced in patients with AD. This was further associated with
attenuated functionality of the suprachiasmatic nucleus (SCN)
due to anatomical and physiological changes with aging and
AD, suggesting the respective scaling exponents as non-invasive
biomarkers for SCN function (Hu et al., 2009). Interestingly, in
our correlational analyses, we find a strong, negative association
between the scaling exponent α2 and the circadian parameter IV
(r = −0.876, 95%-CI [−0.926, −0.818]). The higher irregularity
in the activity signal reflected by these quantities is likely to
be related with SCN function and sleep disturbances (Scherder
et al., 1999; Huang et al., 2002; Hatfield et al., 2004; Musiek
et al., 2018). However, we obtain also the somewhat controversial
results of a negative association between the scaling exponents α2
and the MMSE scores of our present participants (r = −0.328,
95%-CI [−0.549,−0.073]), and in accordance with the foregoing
discussion, also a positive association between the circadian
parameter IV and the MMSE scores. To our best knowledge
such a correlation between activity (ir-)regularity at longer time
scales and MMSE scores has not been reported so far, and at this
moment, we lack an explanation for this result.

The relevance of fractal characteristics at longer time scales
beyond 1.5-2 h puts emphasis also on the possibility to decouple
different time scales within DFA. We particularly obtain no
significant correlation between α1 and IV in line with the
expectation that changes in the SCN affect activity regulation
only at longer time scales (Hu et al., 2007, 2009). Moreover,
Hu et al. (2013) used especially the (signed) difference between

scaling exponents at short and long time scales to quantify
the degree of disturbed fractal regulation. They found that a
more pronounced disruption, i.e., a larger difference between the
two scaling exponents for short and long time scales (α1 and
α2 in the present work, respectively), is associated with more
amyloid plaques in the occipital cortex. The finding suggests that
patients with more severe AD yield also proportionally enhanced
deviations from scale-invariant activity fluctuations (Hu et al.,
2013). Furthermore, this difference measure served as the most
significant predicting factor explaining most of both the variation
of vasopressin and of neurotensin in the SCN. Therefore, this
measure led to a vast improvement in predicting changes in these
circadian neurotransmitters in comparison to more traditional
markers such as the circadian parameter IV (Hu et al., 2013).

Moreover, the finding that AD appears associated with
the break-down of fractal scaling into the discussed two
distinct time regimes (Hu et al., 2009, 2013), which is further
corroborated by our present results, suggests also an eventual
utilization of multifractal approaches (França et al., 2019) for
the characterization of neurodegenerative diseases. Multifractal
analysis could provide an indirect measure to distinguish patients
suffering from fibromyalgia from healthy subjects, whereas a
monofractal approach yielded no significant difference between
the two samples (França et al., 2019). Due to the existence of
distinct scaling regimes in the case of AD patients in contrast
to healthy subjects, it can be expected that such a multifractal
approach allowing the derivation of multifractal spectra can
reveal a more finely resolved picture of the associated difference
in fractal regulation between AD patients and healthy subjects.
Furthermore, between both AD (Witting et al., 1990; van
Someren et al., 1996) and fibromyalgia (Wolfe et al., 1990) exist
associations with disturbances in the sleep-wake cycle or rest-
activity rhythm, which provides at least a further indication for
a useful application of multifractal methods also in the case
of AD. Future studies aiming at scrutinizing the capabilities
of multifractal methods as eventual diagnostic tools in the
framework of neurodegenerative diseases appear hence as one
promising route to follow. In this context, we would like to
note also that the existence of well-distinct scaling regimes is
hardly an exclusive phenomenon to general locomotor activity
in AD. For instance, two distinct scaling regimes have repeatedly
been found also in the analysis of center of pressure trajectories
of subjects during quiet standing (Collins and De Luca, 1994;
Blázquez et al., 2009, 2012). This finding was associated with the
inclusion of both open-loop and closed-loop control processes in
the human postural control system (Collins and De Luca, 1994),
corroborating hence the view of the analysis of fractal signal
characteristics as a feasible tool to (indirectly) shed some light on
underlying neuro-physiological mechanisms.

In 2016, Hu et al. (2016) reported that especially scaling
exponents at the shorter time scales (α1) are reduced as AD
progresses and may hence be utilized for long-term monitoring of
dementia progression. Similarly to the present study, they found
significant positive associations between the scaling exponents α1
and the MMSE scores of their patients at baseline (r = 0.25). In a
recent study, Li et al. (2018) reported that α1 may even be useful
for predicting the risk of AD and the speed of cognitive decline,
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independently from other risk factors like physical activity, sleep
fragmentation and the stability of daily activity rhythms. Taken
together, the discussed findings support the notion that the
fractal characteristics of locomotor activity data contain valuable
information concerning changes in neural function and cognitive
decline which also appear not to be entirely masked by the typical
complication of a highly heterogeneous sample in the case of AD.

Completing our discussion of the correlational analyses
performed by us, we note positive associations between our
measure for average overall activity and the magnitudes of both
scaling exponents α1 and α2. Given that the overall means of
both scaling exponents are smaller than 1, this accords to the
expectation that both higher average motoric activity as well as
scaling exponents closer to 1 tend to be signs of greater health.
In particular, we obtained mean values of 0.94–0.99 ± 0.01 for
α1 (depending somewhat on the considered time resolution) and
0.90 ± 0.02 (irrespective of time resolution) for α2. Although
the focus of our study is on the assessment of the deviation
from fractal scaling (or the break-down into two distinct scaling
regimes in the case of DFA), it appears noteworthy to discuss
also the magnitudes of these scaling exponents in comparison
with earlier investigations. For short time ranges (below about
1.5 h) scaling exponents of 1.00 ± 0.02 for 13 elderly (mean age:
68.5 years, SD = 6.1 years) early stage AD subjects, 0.94 ± 0.03
for 14 very old (mean age: 83.9 years, SD = 6.7 years) late-
stage AD subjects (Hu et al., 2009), 1.13 ± 0.03 for 20 elderly
(62–80 years) subjects (Hu et al., 2013) with various forms of
dementia, but mostly AD, and 0.97 ± 0.01 for 165 subjects (70–
96 years) with mostly AD but also other forms of dementia (Hu
et al., 2016) have been reported earlier. Although there appears
some variance across the different samples, our result appears
reasonable in comparison with the mentioned ones and also with
the (apparently normal) distribution of the scaling exponent at
small time scales reported by Li et al. (2018) for a large sample
of 1097 non-AD subjects (mean age: 81 years, SD = 7.4 years)
yielding a median of 0.92 (SD = 0.06) and a range of exponents
from about 0.6 to about 1.15. Concerning the scaling exponent for
longer time scales (above about 2 h), mean values of 0.80 ± 0.03
for 13 elderly (mean age: 68.5 years, SD = 6.1 years) early stage
AD subjects, 0.69 ± 0.03 for 14 very old (mean age: 83.9 years,
SD = 6.7 years) late-stage AD subjects (Hu et al., 2009), 0.88
(with a standard error of 0.05 for the difference between the two
distinct scaling exponents) for 15 elderly (62–80 years) subjects
(Hu et al., 2013) with various forms of dementia, but mostly AD,
and 0.72± 0.01 for 165 subjects (70–96 years) with mostly AD but
also other forms of dementia (Hu et al., 2016) have been reported.
In contrast, 13 elderly (mean age: 68.6 years, SD = 6.1 years) and
12 very old (mean age: 80.8 years, SD = 8.6 years) control subjects
yielded exponents of 0.83 ± 0.03 and 0.79 ± 0.04, respectively,
hence showing that also age appears to affect fractal regulation
at longer time scales (Hu et al., 2009). Furthermore, 13 young
control subjects (mean age: 25.5 years, SD = 6.1 years) yielded
a mean scaling exponent 0.91 ± 0.02 over the entire considered
time range from minutes up to 8 h (Hu et al., 2009) in good
agreement with an earlier study (Hu et al., 2004) yielding a scaling
exponent of about 0.9 for 16 young subjects (19–44 years). In view
of these results, the obtained mean value of α2 = 0.90 ± 0.02 for

our sample appears at the higher end of the range of reported
values for samples with dementia and intriguingly close to the
value reported for young control subjects. However, while all
the discussed studies have in common their focus on dementia,
a single factor shared between our study and the one of Hu
et al. (2013), reporting a similar, large scaling exponent of 0.88
for longer time scales, is that they both consider in-patients.
In contrast, the above mentioned studies yielding considerably
lower scaling exponents at longer time scales explored daytime
activity patterns of subjects maintaining their habitual sleep-
wake schedules (Hu et al., 2013) or considered locomotor
activity data of assisted care facility residents (Hu et al., 2016).
Although we cannot rule out cultural effects (the discussed
earlier investigations were conducted in the United States
and Netherlands) or effects stemming from different sample
heterogeneities with respect to comorbidities or medication,
we think that the largely standardized activity-protocols usually
followed in hospital treatment may have an impact also at
the fractal regulation of locomotor activity, especially at longer
time scales ranging over several hours. This appears at least in
line with the close associations found between the respective
scaling exponent and circadian parameters discussed above. This
expectation could be basically tested by a direct comparison of the
fractal regulation of locomotor activity in AD in- and out-patients
(ideally, in addition to a sample of age-matched control subjects).

The clinical setting of our study is naturally associated with
a number of limitations. In particular, our participants yielded a
large amount of comorbidities, some of which may also be related
to symptoms of (chronic) pain and, obviously, high heterogeneity
in administered medication. Chronic pain cannot be excluded
from affecting the functional form of CDDs (Paraschiv-Ionescu
et al., 2013) and future studies will be required to scrutinize likely
interactions with effects stemming from dementia. Dedicated
large-scale research is likely to be needed to resolve the various
conceivable consequences of a probably highly nested network of
relevant variables (if this is possible at all). Moreover, we could
not (or just to a very limited extent) investigate the influence
of demographic characteristics (age, social affiliations, etc.),
different medical interventions (ranging from exercise therapy
to physical restraining), or other variants of neurodegenerative
diseases (vascular dementia, frontotemporal dementia, Lewy
body dementia, Parkinson’s disease) on the assessed fractal
characteristics. Although we obtained clear deviations from
fractal scaling for both autonomously mobile and at least partially
immobile patients, subtler effects on the fractal characteristics
of activity signals stemming from the patients’ mobility as
well as dynamic effects associated with comparatively rare
events such as falls cannot be excluded. The same holds
for our comparison of patient samples experiencing and not
experiencing physical restraining. Finally, it has been shown that
the overall scaling exponents obtained via DFA are independent
of external schedules, reactions to the environment, average
activity levels, the phase of the circadian pacemaker and the
placement of the actigraph at either the dominant or non-
dominant wrist (Hu et al., 2004). Reproduction of these findings
for a sample of geriatric patients with dementia like in the present
context is, to our best knowledge, yet lacking. However, this
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would require a decomposition of the entire time scale into
separate time ranges able to describe an eventual deviation from
fractal scaling.

More technical issues, which nevertheless may need further
elaboration before any clinical, diagnostic application of the
considered analyses, are (a) the amount of required activity data
for adequate analyses, (b) effects concerning the placement of
the actigraph, (c) effects of differently defined thresholds for
decomposing the overall activity signal versus threshold-free
analyses, (d) the eventual necessity to exclude certain data (like
day and/or night activity), and – as discussed already above –
(e) the statistical models taken into account when analyzing the
determined CDDs. Concerning (a), more than 9 h of recorded
activity data should be enough to reliably estimate DFA scaling
exponents for time scales below 1.5 h (Hu et al., 2001, 2004,
2009). Concerning analyses of CDDs, recordings of more than
7 days have been suggested (Sano et al., 2012). Moreover, DFA
parameters were found to be stable across days in healthy,
young subjects (Hu et al., 2004). If and to what extent these
findings and suggestions may be transferable to geriatric in-
patients with dementia remains yet an open issue. Concerning
(b), we note that in their analyses of CDDs, Chapman et al. (2017)
used hip-worn actigraphs and the elaboration of the impact
of the placement of the actigraph on the outcome of different
analyses represents an important question. This concerns also
ideas to eventually utilize sensors already present in, e.g., mobile
phones in contrast to the application of an additional, specific
device, which is frequently not easily accepted by patients,
especially when suffering from dementia. Concerning (c), we
note that in the present study, we used the overall average
activity to discriminate low-activity periods from elevated activity
in the case of analyses of CDDs, a strategy which has been
applied repeatedly in earlier investigations (Nakamura et al.,
2007, 2008, 2013a,b, 2016; Sano et al., 2012; Chapman et al.,
2017). Previously, it has been pointed out (Chapman et al., 2017)
that this data-driven approach may be more sensitive to
differences in activity patterns. However, alternative methods
using externally validated thresholds based on categories of
energy-expenditure might be more useful for determining, e.g.,
the time spent at activities of different intensities, but may
also produce large discrepancies in outcomes. Threshold-free
analyses could provide a further alternative (Chapman et al.,
2017). Concerning (d), we note that exclusion of certain portions
of the recorded activity data such as “sleep” or night data may
appear desirable under certain circumstances, e.g., when the
focus should be more on higher order, conscious processes.
However, depending on the type of exclusion strategy, this can be
typically associated with its very own pitfalls and shortcomings
due to sleep latency, night time awakenings, day-night reversals,
napping during the day or particularly restless sleeps among
other factors.

CONCLUSION

To summarize, we found significant deviations from fractal
characteristics of locomotor activity regardless of the choice of

the method, i.e., DFA or analysis of CDDs, for our sample
of geriatric in-patients with dementia at both individual and
sample levels of assessment. Further research is required to
scrutinize whether and how much of this effect can be traced
back to (a) the presence, severity and specific form of dementia,
(b) comorbidities and their associations with pain, (c) effects
of interventions including especially medication, and also how
these possible causal factors may interact. However, taking
together our results with the outcomes of earlier investigations
(Hu et al., 2004, 2007, 2009, 2013, 2016; Li et al., 2018),
we arrive at the conclusion that the fractal characteristics
at least as quantified in terms of parameters obtained via
DFA can be informative in neuropsychiatric contexts and
that our study can add some credibility to the ecological
validity of those parameters. Besides that, together with more
conceptual groundwork, further investigations could clarify
also general relations and interactions between the various
functional, neural systems associated with motor preparation
and coordination generating the complex dynamics apparent in
everyday locomotor activity at the macroscale (Kelso, 1995, 2010;
Van Orden et al., 2005).

Nevertheless, we also tried to emphasize that there exists a
variety of open issues and complications which need further
rigorous, scientific scrutiny. The possible benefits may, however,
outweigh the required endeavors, if they would finally result
in a set of non-invasive, methodologically robust biomarkers,
eventually able to capture cognitive decline and the progression
of dementia (Hu et al., 2016) and providing possibly also
an early warning system regarding detrimental changes over
the life-span and mortality risk (Raichlen et al., 2018) in
a more general sense. The latter is especially important
since concerning neurodegenerative diseases such as AD,
interventions are typically more effective at an earlier stage
(Caselli and Reiman, 2013; Cummings et al., 2016). This finally
puts emphasis on the importance of steadily supporting and
promoting humane living and working conditions also on a
societal level, given the impact which aspects of everyday life
such as physical exercise (Gu et al., 2015) or chronic shift
work (Li et al., 2017) can have on fractal characteristics of
locomotor activity in light of the latter’s intricate relations with
human health.
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