Denkleistungen beim Konstruieren

Prof. Dr. rer. nat. habil. W. Hacker, Dr. P. Sachse, Dr. R. von der Weth, Dresden

Zusammenfassung


1 Einordnung: Konstruieren als Denktätigkeit


Was ist Konstruieren?

Konstruieren ist nach Steuer /1/, S. 14 „schöpferisches und lückenloses Vorausdenken eines technischen Gebäudes, das den Anforderungen des historisch bedingten Standes der technischen Entwicklung entspricht, und Schaffen aller zweckmäßigen Unterlagen für seine stoffliche Verwirklichung. Konstruieren besteht aus Entwerfen und Gestalten.“ Diese Definition konzentriert sich auf zwei Teilklassen von Konstruktionsaufgaben, nämlich auf die Neukonstruktion und die Anpassungskonstruktion, weniger jedoch
auf die Variantenkonstruktion als Rekombinieren von baukastenartig vorgegebenen Modulen. Wir folgen dieser Schwerpunktsetzung.

Im Sinne der Definition ist Konstruieren Denktätigkeit und zwar innerhalb der vielfältigen Arten von Denktätigkeiten sogar die anspruchsvollste. Konstruieren ist nicht Bedenken des Gegebenen, sondern Vorausdenken, also denkendes Entwerfen des noch nicht Gegebenen, eines noch nicht existierenden künftigen Gebildes. Mehr noch, dieses Vorausdenken muß mindestens teilweise schöpferische Qualität haben, denn das zu entwerfende Gebilde soll nützliche neue Eigenschaften aufweisen.


An diesem Punkt entsteht die Frage nach Unterstützungsmöglichkeiten des Konstruierens zum Bewältigen dieses Widerspruchs.
Jeder Arbeitsprozeß benötigt eine Technologie, eine Bearbeitungslehre in Form von heuristischen Rahmenprogrammen, die angeben, welche Spielräume auf welche Weise effizient auszuschöpfen und welche Fehlwege dabei unsicherheitsreduzierend auf welche Weise vermeidbar sind. Das gilt für das Bearbeiten materieller wie geistiger Güter. Was also ist eine Technologie effizienten Konstruierens als Denktätigkeit, genauer als schöpferisch-entwerfendes Problemlösen?


Was bietet die Denkpsychologie für den weiteren Ausbau einer Konstruktionstechnologie an?

Zunächst ist entscheidend, daß leistungsstarke und weniger leistungsstarke Konstrukteure sich nicht unterscheiden in ihrer Intelligenz im Sinne herkömmlicher Intelligenztests /9/. Auch das räumliche Vorstellen trägt nur begrenzt bei zum Erklären guter im Unterschied zu weniger guten konstruktiven Lösungen. Sogar die Berufserfahrung erklärt allein noch nicht die Lösungsgüte. Was aber dann?


Für das Konstruieren ergibt diese Einordnung als geistiges Handeln mindestens zwei nützliche Einsichten:

(1) Effizientes Handeln benötigt verallgemeinerte und damit auf unterschiedliche Aufgaben übertragbare Vorgehensweisen, die Handlungs-, enger die Problemlöse- und noch spezieller die Entwurfsstrategien.


Was also kennzeichnet die Vorgehensweisen, die zu guten konstruktiven Lösungen führen? Und weiter: Weshalb werden sie nicht stets und von allen Konstrukteuren eingesetzt? Wie kann man ihren Einsatz unterstützen?

2 Erfolgreiche Vorgehensweisen

Erfolgreiche Vorgehensweisen kennzeichnen Merkmale sowohl in der Art der Zielsetzung und Zielverfolgung (der Antriebsregulation des Handelns) als auch der Art der zur Zielverwirklichung eingesetzten geistigen Mittel (der Ausführungsregulation des Handelns) /11/; /12/; /13/; /14/; /15/; /9/; /16/; /17/; /18/.

Antriebsregulatorisch kennzeichnet ein erfolgreiches Vorgehen die zielgerichtete Steuerung und Planung. Dabei werden die Ziele ausnehmend gründlich geklärt, zu einem Plan geordnet, aber dennoch flexibel genutzt. Ausführungsregulatorisch ist das erfolgreiche Vorgehen eine Integration von Wissensnutzung und Neuaußendanken, bei der zwar eingehend verschiedene Prinziplösungen entwickelt und verglichen werden, aber dennoch der Lösungssuchraum rationell eingeschränkt wird.

Betrachten wir drei wichtige Merkmale näher:
a) Art des Erfassens und Analyserens des Problems


Im einzelnen sind hierbei Merkmale erfolgreichen Vorgehens /12/, /14/, /15/

- die eingehendere Problemanalyse mit
- der Konzentration auf Elemente, die für die Funktionsfindung wichtig sind - nicht also auf auffällige Elemente;
- das vollständige Bestimmen der Hauptfunktionen;
- ein gewichtiges Zusammenfassen der Zielmerkmale und
- ihr schriftliches bzw. zeichnerisches Fixieren sowie
- ein auf das Gesamtziel bezogenes, aber flexibles Umgehen mit den herausgearbeiteten Zielmerkmalen.

Zwischen der Anzahl der in die Analyse einbezogenen Merkmale und der Lösungsgüte wurde ein gesicherter Zusammenhang nachgewiesen /15/.

b) Art der Suche von Prinziplösungen

Der Kern des Entwurfens besteht im Herausarbeiten mehrerer Varianten eines Lösungsprinzips. Es geht nämlich nicht kurzer Hand um Problemlösen als Lösung des fertig gegebenen Problems, sondern zunächst um das Problemfinden als das Entwerfen von Problemvarianten, deren verfeilungsstille herauszufinden und dann zu lösen ist. Das ist kein deduktives Denken, welches durch Regeln geleitet wird, sondern induktives, schöpferisches Denken, für das es keine erlernbare, systematisch anwendbare Methode gibt, die zum Ziel führt.

Im einzelnen sind hierbei Merkmale erfolgreichen Vorgehens /19/, /12/, /20/, /21/, /15/, /9/:

- Ein Vorgehen, das neue Lösungen erzeugt im Gegensatz lediglich zum Korrigieren von schon gegebenen Lösungen (generierende versus korrigierende Lösungsverzweigung, /3/) dabei
- das Konzipieren mehrerer verschiedener Lösungsprinzipien vor dem weiteren Entwerfen eines ausgewählten Prinzips.
Bei aller Bedeutung dieses divergenten schöpferischen Suchens vielfältiger Prinziplösungen bleibt das erfolgreiche Vorgehen jedoch nicht dabei stehen. Es schließt an - das konvergierende Eingrenzen der Lösungsvielfalt, des sogenannten Suchraums, auf möglichst wenige Varianten, die weiter durch Entwurfsschritte auszuarbeiten sind.


c) Rückkoppelndes Beurteilen der Lösungsschritte

Beim erfolgreichen Vorgehen werden
- häufiger die verfolgten Lösungsvarianten auf ihre Güte beurteilt. Desweiteren erfolgt dieses Beurteilen
- nicht nur auf einem Abstraktionsniveau, sondern es werden sowohl die Angemessenheit des abstrakten Prinzips als auch der konkreten Detaillösungen wiederholt beurteilt /23/.

Insgesamt kennzeichnet das erfolgreiche Entwerfen also ein zielgerichtetes und streckenweise auch planendes (methodisches), aber dennoch flexibles Vorgehen. Experimentelle Befunde bekräftigen, daß eine Kombination von hartnäckigem Zielverfolgen und Planen bei flexibler Zielanpassung an neue Erfordernisse und Einsichten zu besseren Leistungen zu führen vermag /24/, /25/. Damit sind Rahmenforderungen an eine hilfreiche Konstruktionsmethodik skizziert: Sie muß führen, ohne zu gängeln, sie sollte also eine Heuristik, aber kein Algorithmus sein.

Zerlegen wir nun das Vorgehen in seine Grundlagen: Problemlösen kann unter zwei Aspekten näher beschrieben werden, nämlich dem lösungsbegünstigendem Aufbau von Problemprepräsentationen und dem effizienten Operieren (hier Entwerfen) an diesen Repräsentationen. Was unterscheidet dabei erfolgreiche von weniger erfolgreichen Bearbeitern?
3 Merkmale lösungs begünstigender Problemrepräsentationen (mentaler Modelle)


4 Lösungs begünstigende Entwurfsprozeduren: Entwerfen als Wechselwirkung von „innerem“ und „äußerem“ Handeln

Gesetzt, der Konstrukteur habe einen lösungsdienlichen Suchraum im Kopfe, so muß er an ihm operieren. Er muß Merkmale von Varianten vergleichen, anders kombinieren, verändern, unberücksichtigte neu einführen und irrelevante verwerfen. Das läuft beim Menschen anders ab als bei Computern. Menschen entwerfen keineswegs stets vom Detail zur Gesamtlösung, sondern oftmals auch von einem unbestimmten Eindruck her zum zunehmend bestimmteren Detail. In diesem Falle beginnt der Konstrukteur „also nicht mit einzelnen Lösungselementen, sondern einer Lösungsganzheit ... Diese Ganzheit enthält im Keim bereits alle weiteren Einzelheiten, die nun im Vorgang des Entwerfens entfaltet werden. Das Entwerfen ist also ... ein fortschreitendes Klären der zu erfüllenden Teilfunktionen und ein Unterteilen sowie Präzisieren ..., ein ganzheitlich-analytisches Verfahren, wobei der Entwerfer in zwei Ebenen schöpferisch arbeitet. Einmal bedient er sich ... „vorbewußt"... abstrakter Gesamtstrukturen, und zum zweiten skizziert er „bewußt” konkrete ... Elementkombinationen" /27/, S. 4.


In einer Untersuchung zur Arbeitsweise von Konstrukteuren befragte Görner /29/ 74 Probanden, ob sie bei der Erarbeitung des Lösungsentswurfs einer konstruktiven Aufgabe „vorwiegend gedanklich" oder „vorwiegend skizzierend“ vorgehen. Es antworteten
- 69,3 % mit „vorwiegend skizzierend"
- 3,8 % mit „vorwiegend gedanklich"
- 26,9 % der Probanden gaben ein ausgeglichenes Verhältnis von gedanklichem und skizzierendem Vorgehen an.
Bei der Frage, warum skizziert werde, waren drei Kategorien von Antworten vorgegeben und Mehrfachaussagen zulässig. Dabei ergab sich, daß

- 61,5 % die Skizze zur Verdeutlichung der Gedanken benötigen,
- 44,3 % sie als Merkhilfe ansehen (Arbeitsgedächtnisentlastung) und
- 30,8 % sie als Verständigungsmittel benutzen, wenn sie mit Kollegen über ihre Lösungsvorstellungen diskutieren.


Befragungen von Konstrukteuren ergaben folgende Hauptfunktionen solcher Prototypen-Nutzung /30/: Die Prototypen dienen als Analysehilfe, als Lösungshilfe insbesonde-
Weiter folgt, daß eine Konstruktionsmethodik dann optimal unterstützt, wenn sie zwar Führung anbietet, aber die opportunistischen Anfangsschritte dabei nicht beengt.

6 Unterstützung des Entwerfens durch Arbeitsmittel: Werkzeuge oder Maschinen (CAD)?

Das Skizzieren, Schreiben oder Rechnen als materialisierendes Denken erfolgen mit Arbeitsmitteln. Hierbei sind zwei verschiedene Typen von Arbeitsmitteln auseinanderzuhalten: Werkzeuge, z. B. Stifte, und Maschinen, z. B. Computer. Worin bestehen die grundsätzlichen Unterschiede?
- Werkzeuge verlängern und verstärken menschliche Funktionen, Maschinen ersetzen sie.

Welche Arbeitsmittel sollten also beim materialisierenden Denken mit der Hand genutzt werden, unterstützende, selbstlose Werkzeuge oder den Menschen ersetzende, aber Zuwendung erfordernde Computer? Eine Antwort für das Konstruieren schlägt Viebahn vor /32/, S. 53: „Weil ein Zeichenprogramm mit unvollständig beschriebenen Objekten wenig anfangen kann, müssen ihre Abmessungen und geometrischen Eigenschaften im Prinzip ausdrücklich eingegeben werden. Das kostet Zeit und der Mensch macht dabei leicht Fehler, auch wenn er sich konzentriert. Viele Erfindungen versu-
chen daher, die Dateneingabe bequem und sicher zu machen: ... Digitalisiertablets, Mäuse, Lichtgriffe, Touchscreens, Trackballs ... Doch nach 10 Jahren gilt immer noch: Um ein Bild oder einen Gedanken im Computer zu speichern, muß der Konstrukteur einen nicht geringen Teil seiner geistigen Kapazität dem Gerät widmen. So war das eigentlich nicht gedacht. Diejenigen, die auf ihre Kreativität angewiesen sind, wissen, daß sie während ihrer schöpferischen Momente nicht durch Kleinigkeiten abgelenkt werden wollen. Vernünftigerweise setzt sich ein Konstrukteur erst dann an den Computer, wenn sich seine Vorstellung von dem darzustellenden Objekt gefestigt hat. Dahin gelangt er mit Handskizzen, denn er weiß, daß ihm die Gedanken beim Skizzieren fast wie von selbst aus der Hand fließen - und zwar bequemer als beim Zeichnen mit der Maus."


6 Zusammenfassende Schlußfolgerungen

Im Konstruktionsprozeß sind die frühen Phasen der Problemfindung und Problemanalyse und des Auswählens und Konzipierens eines Lösungsprinzips ergebnis- und kostenbestimmend.


Skizzieren und Modellieren speziell in den frühen Phasen des Konstruktionsprozesses entlastet jedoch nicht allein die begrenzte Bewußtheitskapazität, sondern vor allem


Literatur


